
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

October 2, 2019

1 / 39

Announcements

There is no lecture on Wednesday, October 9

This will be the last week that I plan to give full lectures. Then
starting Wednesday October 16, I would like to hold the class as a
1/2 lecture, and 1/2 reading course reporting.

I would therefore like everyone, taking the course for credit or not for
credit, to choose a chapter for their part of the reading course. As I
said, we would use 1/2 of the time to give short presentations on the
reading to date.

At the end of the term, we can summarize all the readings.

2 / 39

Week 4 Agenda

This week we will complete some discussion of topics in chapter 4. Then
we will go on to topics in chapters 5 and (maybe) 6.

More specificially, we will discuss:

Load balancing in circuit routing.

Input models for graphs

One-sided input model for bipartite graphs

Online inapproximations for various graph problems

Online bipartite matching; the Ranking algorithm and its online
optimality for adversarial inputs

Online graph coloring
I Arbitrary graphs
I Bipartite graphs
I d-inductive graphs

Note: In reading some relevant papers, there has been some
significant progress in randomized lower bounds for graph coloring. I
can still see some research questions that I think are approachable.

3 / 39

Online graph problems

Chapter 5 studies graph problems where now the input graph is being
revealed online. (This is in contrast to say the virtual circuit routing
problem where the graph is known in advance.)

There are two issues to keep in mind for the study of online graph problems

1 Many graph problems are know to be NP-hard to approximate (to
obtain anything much better than a trivial approximation). However,
because we ignore complexity constraints, this does not imply that
there is necessarily a corresponding online hardness of approximation.

2 In the problems we have previously studied there was a natural input
representation. But for graphs there are alternatives and we need to
be precise as to how graphs are represented.

4 / 39

Graph online input models

Let G = (V ,E) be a graph. In an online framework, either the vertices V
or the edges E will be the online inputs. That is, we assume that the sets
V and E are totally ordered and use the symbol ≺ to indicate the order.
For example, if ≺ is a total order defined on V , then for two vertices
u, v ∈ V we write u ≺ v to indicate that the input item associated with u
is revealed before the input item associated with v .

There are four input models for online graph problems.

The Edge Model (EM). Each input item is an edge given by its two
endpoints. Thus, the input graph G is presented as a
sequence of edges {u1, v1}, {u2, v2}, . . . , {un, vn}. The
algorithm does not know V a priori and it is understood that
V =

⋃n
i=1{ui , vi}.

5 / 39

The vertex adjacency model, past history

The Vertex Adjacency Model, Past History (VAM-PH). Each input
item consists of a vertex together with a set of neighbors
among the vertices that have appeared before. Suppose that
input items are revealed in the order given by ≺ on V , then
each new input item can be described as follows:

(v ;N(v) ∩ {u : u ≺ v}) .

We note that the model that makes the most sense for online applications
is often (but not always) the VAM-PH model, especially when a graph
problem requires decisions about nodes. Suppose we want to apply the
theory of online algorithms to graphs that grow dynamically, for example,
graphs arising out of social networks. In those real-life scenarios, consider
the graph growing because of new users joining the network (as opposed
to new friendships being established between existing users). When a new
user joins the network, they establish connections with friends that are
already using the social network.

6 / 39

The edge adjacency model

The Edge Adjacency Model (EAM) In this model, we associate with
each edge e = {u, v} a label `e . Note that the label does
not carry the information about the endpoints of an edge e.
An input item in this model consists of a vertex together
with a set of labels of edges that are incident on that vertex.
Formally, each input item is of the form:

(v ; {`e : v ∈ e}) .

Thus, if a neighbor u ∼ v has appeared before v , i.e., u ≺ v ,
then an online algorithm can recover the information that
u ∼ v , since both data items corresponding to u and v will
contain the same label `{u,v}. If a neighbor u ∼ v appears
after v , i.e., v ≺ u, then an online algorithm only knows that
some neighbor is going to appear later in the input sequence,
but it does not know the identity of u at the time of
processing v .

7 / 39

The vertex adjacency model, full information

The Vertex Adjacency Model, Full Information (VAM-FI). Each
input item consists of a vertex together with the set of all its
neighbors (even the neighbors that have not appeared
before); that is, an input item is of the form:

(v ;N(v)) .

If in an application all nodes (and their names) are known a-priori then
this is the appropriate model. But as we have said , it is not a realistic
online model for many applications.

8 / 39

The relative representation power of these input
models

For two models M1 and M2 we use the notation M2≤M1 to indicate that
any algorithm that works in model M1 can be converted into an algorithm
that works in model M2 without any deterioration in the performance, as
measured by the worst-case competitive ratio. Intuitively, M2≤M1 means
that M1 is a harder model for online algorithms, while M2 is harder for
adversaries. We shall not provide a formal definiton of the reduction used
to define ≤ as to do so would obscure the intuitive idea that will become
apparent in the following informal lemma.

Lemma (informal)

We have the following relationships

VAM-FI≤EAM≤VAM-PH≤EM

Note that ≤ is a transitive relation.

9 / 39

What input model is more appropriate?

In some graph problems, it might be more appropriate to make decisions
about edges rather than about nodes. For instance, suppose that a
solution to a problem is a matching or a path or a tree (as in the MST
problem). Then such a solution can be represented as a sequence of 0/1
decisions about edges – whether or not to include an edge in a matching
or path or tree. In such scenarios, the EM input model might be more
natural than the VAM-PH input model.

Often, there are graph problems where either model can be considered
natural. For example, consider a maximum matching problem. A matching
can either be thought of as a collection of vertex-disjoint edges, which
leads to 0/1 decisions in the EM model, or it can be viewed as a map
going from a vertex to its (potentially matched) neighbor, which leads to
decisions labelled by names of neighbors in the VAM-PH model.

10 / 39

Approximation hardness for online graph problems

Not surprisingly, many NP-hard to approximate graph problems remain
hard to approximate in the online model even for randomized algorithms.
For n = |V |, we have the following results for general graphs:

ρOBL = Ω(n) for the max independent set problem.

ρOBL = Ω(n) for the max clique problem.

ρOBL = Ω(n) for the longest path problem.

ρOBL =∞ for the traveling salesperson problem.

ρOBL = Ω(n
log n) for the (min) coloring problem.

Perhaps less predictable, ρOBL = Ω(n) for the MST (min spanning tree)
problem. But the MST result is in the EM input model.

11 / 39

MSTs and Steiner trees in VAM-PH model

As we have commented, EM is the weakest model (i.e. provides the least
amount of information in each input item) but it is sufficient for an offline
optimal greedy algorithm (e.g. Kruskal’s or Prim’s algorithm) for the MST
problem. What is possible for an online algorithm in the VAM-PH model?

I just recalled (i.e., just before the lecture) a 1991 paper by Imase and
Waxman which gives an log n competitive algoriithm (and an almost
matching lower bound) for the more general dynamic Steiner tree problem.

I have not carefully looked at the precise model as to what exactly is being
assumed but the paper seems to show a log n competitve ratio for the
MST problem when the graph distances are a metric..

Without that assumption or some other assumptions, one can show strong
negative results.

The Imase and Waxman algorithm follows on the next slide.

12 / 39

Imase and Waxman

I will interpret this algorithm as an MST algorithm if my understading is
correct.

DYNAMIC STEINER PROBLEM 375

To:=({v0},,(); So: {v0};
for _-< K

if h is an add request
Choose the shortest path pj from vj to T_
T := T,_I U p
S, := S_I U {v,}
rj is a remove request
s, := s_ {v}
T := T_
do V (T) S contains node w with degree
T := Tj- w

od
fi

rof

FIG. 3. Dynamic greedy algorithm DGA).

LEMMA 3. Let G(V, E) be a complete graph with a cost fitnction C: E -- +satisfying the triangle inequality, and let S be any nonempty subset of V with SI i. If
2P is the cost of an optimal tour for S and is a function l: V 1 + satisfying the
following conditions:

1. dist (u, v) >= min l(u), l(v) for all nodes u, v S, and
2. l(v <= Pfor all v S,

then

(vsl(V)) maxvEs /(v) --< ([lg i])P.

Proof. This lemma follows from an intermediate result that is derived in the proof
of Lemma of[8] since the proof holds not only when S V, but for any nonempty
subset S

THEOREM 2. Let I be any instance ofDST-N with requests R { ro, r, rE
and let ni IS for each terminal set Si. Ifeach ri is an add request, then

(3)
DGA(Si)

=<[lg (ni)]OPT(S)
holdsfor all i, 0 < <= K.

Proof. In the construction of tree Ti for terminal set S, node v; is connected by a
shortest path from vi to a node in Ti-. Thus, if we let l(vi) min0=<y<i dist (vi, vy) for

<-< <= K, then the cost of the path selected by DGA to join vi to T_ is less than or
equal to l(vi). Let l(vo) max__<y__<Kdist (Vo, vy), so that l(vo) >= max0=<y=<i l(vy). Note
that l(vy) <= OPT(S) for all j, 0 =<j =< i, and that DGA(Si) =< (i=0 l(vy)) l(vo).

Now consider any pair ofnodes vh, vy in tree Ti and assume, without loss ofgenerality,
that h < j. It then follows that l(vj) <- dist (vh, vj), so that (1) of Lemma 3 holds.
Note that a tour of set Si can be constructed from a Steiner tree for S such that the cost
of the tour is no more than twice the cost of the Steiner tree. Thus P <= OPT(Si).
Since l(v)<= P for all j, 0 =< j =< k, (2) of Lemma 3 also holds, and the theorem
follows.

A slightly better bound of lg (n) can be proved [3] at the expense of a more com-
plex proof.

3.3. Performance with remove requests. We now consider the general case of
DST-N where we allow both the addition and removal of nodes. We show that any

D
ow

nl
oa

de
d

10
/0

2/
19

 to
 1

28
.1

00
.3

.1
10

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

13 / 39

A special input model for bipartite graphs

In many online applications of bipartite graphs, it is only one side of the
vertex partition that arrives online while the other side is known. We
describe this “one-sided” bipartite model as follows. Let G = (U,V ,E) be
a bipartite graph.

The Bipartite Vertex Arrival Model (BVAM) In this model, vertices in
U arrive online in the vertex adjacency format. We assume that “offline
vertices” in V are revealed in advance. Thus, V is also called the set of
“known” or “offline” vertices. U is called the set of “online” vertices 1.
When an online node u ∈ U arrives, all of its incident offline vertices,
N(u) ⊆ V , are revealed as well.

Lemma

For bipartite graphs we have

BVAM≤VAM-PH
1There is no agreed upon conventions. In some papers, it is V that is the set of

online vertices. Some papers use L (left) and R (right)
14 / 39

More on the input models for bipartite graphs

We can always “forget” the bipartite structure of the graph and consider
G as a general graph. Thus, we can always consider G to be given in one
of the input models for general graphs. We couild refer to this model as
the “two-sided” online bipartite model.

Most results for bipartite graphs are with respect to the onde-sided BVAM
model, and we will assume this model unless otherwise stated. Due to the
many online applications, the BVAM model will be discussed in various
chapters of this text. Often, appllications will require that the graphs are
weighted. The most general (and hardest to provide good algorithms) is
when edges are weighted.

A simpler weighted model is when the offline vertices (i.e. the vertices in
V) are weighted but not the edges. When just the online vertices are
weighted, it is not clear what can be done in this model that can’t be done
for edge weights.

15 / 39

Maximum matching in bipartite graphs

In various settings, online matching in bipartite graphs is the basic
problem. Due to the many applications, especially in online advertising,
this problem has been a major reason for the continued research activity
regarding the performance of online algorithms. Weighted and stochastic
versions of bipartite matching are particularly important. See Chapters
10,11,12,14,16,17 in the text. In Chapter 5, we only consider the
unweighted maximum matching problem in the adverarial setting.

Given a graph G = (U,V ,E) a subset of edges M ⊆ E is called a
matching if the edges in M do not share any vertices, i.e., for all e, e ′ ∈ M
we have e ∩ e ′ = ∅. In the unweighted maximum matching problem, the
goal is to find a matching that is as large as possible. We shall refer to a
greedy online algorithm as one that will always match an online node u
upon arrival if there are any unmatched neighbors of u.

16 / 39

Any greedy algorithm is at least 1
2 competitive. No

deterministic algorithm can be better.

A maximal matching M ⊆ E is a matching that cannot be extended. The
following fact is well known and easy to see:

Fact

Let M be a maximal matching and M∗ a maximum matching. Then
|M| ≥ 1

2 |M∗|.

It is also easy to see that any determininistic online algorithm is at most 1
2

competitive. Consider a simple 2× 2 bipartite graph. Namely, let
U = {u1, u2}, V = {v1, v2} and E = {u1, v1), (u1, v2), (u2, v1)}. Upon
seeing u1, the simple greedy matches it to v1, so when u2 arrives it cannot
be matched.

17 / 39

Can a randomized algorithm do better?

The most natural randomized greedy algorithm matches an arriving online
node u to a random available neighbor. Consider the following family of
graphs. The vertices are U = {u1, . . . , u2n} and V = {v1, . . . , v2n}. Each
node in the first half of U is connected to each node in the second half of
V by an edge. In addition, each “parallel” edge, that is (ui , vi), is present.
Formally, we have:
E = {(ui , vj) | i ∈ [n], j ∈ [n + 1, . . . , 2n]} ∪ {(ui , vi) | i ∈ [2n]}. It can be
shown that the natural randomized greedy algorithm achieves (asymptotic)
competitive ratio 1

2 on this instance. Thus, this algorithm provides no
improvement over the simple greedy algorithm.

Perhaps surprisingly, there is another simple greedy strategy that, although
somwehat less natural, provides a significant improvement over the
competitive ratio of the natural randomized greedy. We alluded to this
algorithm when we discussed the makespan problem in the restricted
machines model.

18 / 39

The Ranking algorithm

We will present the Ranking algorithm that achieves competitive ratio
1− 1

e ≈ .632. Let |V | = n. (Recall we assume that V is known.) The
Ranking algorithm initially picks a uniformly random permutation of V
and fixes it for the whole duration of the online phase. In the online phase,
when a vertex u arrives, match it with a vertex of best rank among the
unmatched neighbors of u. The pseudocode of Ranking is as follows:
88 CHAPTER 5. GRAPH PROBLEMS

Algorithm 16 The Ranking algorithm for BMM.

procedure Ranking
V – set of o✏ine vertices
Pick a ranking � on vertices V uniformly at random
M ;
i 1
while i  n do

New online vertex ui arrives according to � together with N(ui)
if Nc(u) 6= ; then . if there is an unmatched vertex in N(ui)

. select the vertex of best rank in N(ui)
v arg min{�(v) : v 2 N(u)}
M M [{(ui, v)} . match ui with v

i i + 1

to analyze. Ranking has an interesting discovery and analysis history (see the historical notes at the
end of this chapter). The remainder of this section is dedicated to proving the following theorem.

Theorem 5.4.3.

⇢OBL(Ranking) = 1� 1

e
⇡ .632.

We begin by establishing the positive result, i.e., ⇢OBL(Ranking) � 1 � 1
e . Let G = (U, V, E)

be a given bipartite graph with U = V = [n] (disjoint copies). Exercise 10 asks you to prove that
we can assume G has a perfect matching without loss of generality. Let M⇤ denote some perfect
matching. We will use notation M⇤(x) to denote the neighbor of x as given by the matching M⇤.
We note that a vertex of rank t is a random variable. Let pt denote the probability over � that the
vertex of rank t in V is matched by Ranking. We are interested in computing the expected size
of the matching returned by Ranking, which is given by

Pn
t=1 pt. Our analysis of Ranking will be

centered around establishing the following lemma:

Lemma 5.4.4. For all t 2 [n] we have 1� pt  (1/n)
Pt

s=1 ps.

We first assume Lemma 5.4.4 to prove that Ranking has competitive ratio 1 � 1
e as follows.

Observe that p1 = 1, since G has a perfect matching. By induction and the lemma, it follows that
pt � (1� 1/n)(n/(n + 1))t�1 for all t � 2. Thus, we have

nX

t=1

pt = p1 +
nX

t=2

pt �
1

n
+

✓
1� 1

n

◆ nX

t=1

✓
n

n + 1

◆t�1

� 1

n
+

✓
1� 1

n

◆ 1�
⇣

n
n+1

⌘n

1�
⇣

n
n+1

⌘

=
1

n
+

✓
n� 1

n

◆
1�

✓
n

n + 1

◆n�
� n


1�

✓
1� 1

n + 1

◆n�
,

where the first inequality follows by representing p1 = 1/n + (1 � 1/n) and absorbing the second
(1� 1

n) term into the sum, and the last inequality follows since 1/n � 1/n(1�(n/(n+1))n). Lastly,

to conclude the proof of Theorem 5.4.3, we observe that 1�
⇣
1� 1

n+1

⌘n
! 1� 1/e as n!1.

Next, we show how to prove the lemma. Let At denote the set of permutations such that a
vertex of rank t is matched by Ranking. Let S[n] denote the set of all permutations V ! V and
define Bt = S[n] \ At; that is, Bt is the set of permutations such that a vertex of rank t is not

19 / 39

Ranking has competitive ratio 1− 1
e

Consider first the positive result; i.e., ρOBL(Ranking) ≥ 1− 1
e . Let

G = (U,V ,E) be a given bipartite graph with U = V = [n] (disjoint
copies). We can assume G has a perfect matching without loss of
generality.

This is a seminal result and the result is due to Karp, Vazirani and
Vazirani (STOC 1990) and is sometimes called the KVV algorithm. KVV
also showed that this is an optimal online algorithm; that is, no
randomized algorithm can have an asymptotic ratio better than 1− 1

e . It
turns out that there was a subtle issue with their analysis which was later
discovered and by now there are several proofs of the KVV algorithm
competitive ratio. The first completely rigorous proof s due to Goel and
Mehta (2008). We will see a proof based on game theory in Chapter 9.
Here, we present the Birnbaum and Mathieu proof.

20 / 39

The Birnbaum Matheiu proof

We note that a vertex of rank t is a random variable. Let pt denote the
probability over σ that the vertex of rank t in V is matched by Ranking.
We are interested in computing the expected size of the matching returned
by Ranking, which is given by

∑n
t=1 pt . The analysis is centered around

establishing the following lemma:

Lemma

For all t ∈ [n] we have 1− pt ≤ (1/n)
∑t

s=1 ps .

We first assume the Lemma to prove that Ranking has competitive ratio
1− 1

e as follows. Observe that p1 = 1, since G has a perfect matching. By
induction and the lemma, it follows that pt ≥ (1− 1/n)(n/(n + 1))t−1 for
all t ≥ 2.

21 / 39

Ranking analysis continued

Using the lemma, we have:

∑n
t=1 pt = p1 +

∑n
t=2 pt ≥ 1

n +
(
1− 1

n

)∑n
t=1

(
n

n+1

)t−1

≥ 1
n +

(
1− 1

n

) 1−(n
n+1)

n

1−(n
n+1)

= 1
n +

(
n − 1

n

) [
1−

(
n

n+1

)n]
≥ n

[
1−

(
1− 1

n+1

)n]
,

where the first inequality follows by representing p1 = 1/n + (1− 1/n) and
absorbing the second (1− 1

n) term into the sum, and the last inequality
follows since 1/n ≥ 1/n(1− (n/(n + 1))n). Lastly, to conclude the proof

of the Theorem, we observe that 1−
(

1− 1
n+1

)n
→ 1− 1/e as n→∞.

22 / 39

Completing the proof of the Ranking ratio

It remains to prove the lemma. Let At denote the set of permutations such
that a vertex of rank t is matched by Ranking. Let S[n] denote the set of
all permutations V → V and define Bt = S[n] \ At ; that is, Bt is the set of
permutations such that a vertex of rank t is not matched by Ranking. We
shall construct an injection of the form [n]×Bt →

⋃t
i=1 Ai . This will prove

the lemma. The following figure helps in understanding the injection.

5.4. BIPARTITE MAXIMUM MATCHING 89

matched by Ranking. We shall construct an injection of the form [n] ⇥ Bt !
St

i=1 Ai. This will
prove the lemma. (See Exercise 7.)

The injection is defined as follows. Let � 2 Bt and i 2 [n]. Let v be the vertex of rank t in �,
define �i to be the permutation obtained by moving v into a position i and shifting other elements
accordingly, so that the rank of v in �i is i. It is not di�cult to see that this map is injective, so it
remains to show that it is well defined, i.e.: for all � 2 Bt and i 2 [n] we have �i 2

St
s=1 As. There

are two cases to consider, namely, when i � t (see Exercise 11) and when i < t which we will now
consider. Let u be neighbor of v in the perfect matching that we initially fixed, i.e., M⇤(u) = v.
Note that since v is not matched by Ranking with respect to �, it follows that u is matched by
Ranking to some vertex of rank < t with respect to �, otherwise when u arrives it would have been
matched to an available neighbor of rank t, namely, v. In fact, an even stronger statement is true:
u is matched by Ranking to a vertex of rank  t with respect to �i for all i 2 [n]. This is clearly
true for i > t, because by moving v to a worse rank than t has no a↵ect on how vertices of rank
< t are matched. Thus u remains matched to a vertex of rank < t. Moving v to a better rank than
t, results in a new matching constructed by Ranking. The di↵erence between the new matching
and the old matching is given by an alternating path with every vertex from U being matched to a
vertex of rank that is at most 1 worse than before (this is because moving v to rank i < t increases
the ranks of vertices between i and t by 1). Figure 5.4 is helpful in following this argument.

u v rank t

U V

...
...

...

Ranking before moving v

Ranking after moving v

moving v to a better rank

Figure 5.4: The di↵erence between the matching constructed by Ranking on � and the matching
constructed by Ranking on �i with i < t.

This completes the proof of the positive result concerning Ranking. In the remainder of this
section, we argue that the competitive ratio of any randomized algorithm for bipartite matching
cannot be better than e/(e� 1).

Theorem 5.4.5. Let ALG be a randomized algorithm for BMM in the BVAM input model. Then

⇢OBL(ALG)  1� 1

e
.

Proof sketch. We prove this result by exhibiting a family of bipartite graphs, which have a perfect
matching, but a given randomized algorithm matches at most a 1� 1/e fraction of nodes in expec-

23 / 39

The online optimality of the Ranking algorithm

KVV also proved that no randomized algorithm can do better
(asymptotically) than the Ranking algorithm. To prove the negative result,
it suffices to exhibit a distribution on inputs such that the best
deterministic algorithm does not perform very well with respect to that
distribution. Next, we define the distribution. We fix the vertex sets to be
U = {u1, . . . , un} and V = {v1, . . . , vn}. For a permutation π : [n]→ [n]
we define a graph Gπ := (U × V ,Eπ), where Eπ = {(ui , vj) |π−1(j) ≥ i}.
The distribution P is the distribution of Gπ when π is chosen uniformly at
random among all possible permutations. Observe that when π is the
identity permutation, Gπ is the so-called triangular graph, because the
biadjacency matrix where rows are indexed by U and columns are indexed
by V is the upper-triangular matrix. Any other graph from the support of
P is obtained by permuting the columns of the upper-triangular matrix.
Observe that Gπ has a perfect matching given by matching ui with vπ(i).

24 / 39

The optimality of KVV continued

Fix a deterministic algorithm A. We can assume that A is greedy. The
intuition behind the negative result is that by choosing π randomly we
hide the “true” identities of offline nodes. By “true” identities of offline
nodes we mean their ranks in the triangular graph.

The algorithm sees an offline node vi , but the true identity of the node is
given by vπ−1(i). By induction, when an online node ui arrives with k
available neighbors, the true identities of those neighbors form a uniformly
random set of size k from among {vi , . . . , vn}. It follows that the
performance of A on P is exactly equal to the performance of the natural
randomized greedy algorithm on the triangular graph.

25 / 39

Online graph coloring

Given a graph G = (V ,E), a function c : V → [k] is called a valid
k-coloring of G if for every edge {u, v} ∈ E we have c(u) 6= c(v). The
value c(v) is called a color of the vertex v . A graph is called k-colorable if
there exists a valid k-coloring.

Trivially, with the exception of the complete graph which requires n colors,
every graph on n = |V | vertices is (n − 1)-colorable. However, many
graphs can be colored with many fewer colors. Constructing a valid
coloring online in the VAM-PH input model is difficult for general graphs.
More precisely, we have the following result:

Theorem

For any deterministic online algorithm ALG for coloring in the VAM-PH
input model, there exists a log n-colorable graph G such that ALG uses at
least 2n/(log n) colors. In other words, we have ρ(ALG) ≥ 2n

log2(n)
.

26 / 39

Coloring k-colorable graphs

The theorem shows that the class of log n-colorable graphs does not admit
online algorithms that are significantly better than the trivial algorithm.
For the case of constant k ≥ 3 colors, the competitive and approximation
ratios remain an open question. Blum and Karger’s (1997) Õ(n3/14)
approximation remains the best known offline approximation for
3-colorable graphs. (Coloring 3-colorable graphs is an NP-hard problem.)

The current state of the art for the online competitive ratio is O(n1−
1
k!)

for coloring k-colorable graphs (and, additionally an improved Õ(n2/3) for
3-coloroable graphs) due to Kierstead (1998).

For the case of k = 2 (i.e., bipartite graphs), tight bounds are known. We
first note that trees are a special case of 2-colorable graphs. The following
result shows that for every deterministic coloring algorithm ALG , there is a
tree T with 2k−1 nodes such ALG uses k colors in coloring T . This will
show that the competitive ratio ρ ≥ log n

2 . A somewhat more involved
argument shows that ρ ≥ log n for which there is a corresponding positive
result.

27 / 39

A lower bound for coloring trees

Theorem

Let ALG be a deterministic online algorithm for Graph Coloring problem
restricted to bipartite graphs in the VAM-PH input model. Then there is a
tree T with n − 1 nodes such ALG uses atv least log n colors when
coloring T . That is, ρ(ALG) ≥ log n

2 .

Proof.

We prove the following statement by induction on k : given an arbitrary
sequence of input items I1, . . . , Im, the adversary can extend the sequence
with disjoint trees T1,T2,T3, . . . such that ALG colors roots of the trees
with k different colors and the combined size of the trees is ≤ 2k − 1. See
text.

28 / 39

First Fit is an optimal coloring algorithm for trees

The natural greedy coloring algorithm is First Fit. That is, for each new
node, color it with the smallest non-conflicting color.

Theorem

For online coloring of trees, First Fit achieves the optimal ρ = log n
competitive ratio.

29 / 39

Coloring bipartite graphs

Since First Fit is an optimal online coloring algorithm for trees, it is
natural to ask how well First Fit performs on the more general class of
bipartite graphs. It is easy to see that First Fit can do very poorly when
coloring some bipartite graphs.

Fact

ρ(FirstFit) ≥ n/4.

Proof.

Let Gn = (U,V ,E) be the 2n node bipartite graph where |U| = |V | = n
and E = {(ui , vj)|i 6= j}. That is Gn is a complete bipartite graph minus
the edges {ui , vi}. The adversary presents the vertices in the following
order: u1, v1, u2, v2, . . . un, vn}. First Fit wll use n colors on this input
sequence compared to the optimal 2 colors.

30 / 39

An optimal online coloring algorithm for bipartite
graphs

While First Fit performs poorly on bipartite graphs, there is an online
algorithm that will color every bipartite graph with n colors. Rather than
greedily coloring each node v , the algorithm just avoids using the same
color in the connected component in which v initially occurs. Here is the
algorithm:
When a vertex v arrives, CBIP computes the connected component Cv (so
far) to which v belongs. Since the entire graph is bipartite, Cv is also
bipartite. CBIP computes a partition of Cv into two blocks: Sv that
contains v and S̃v that does not contain v . In other words, Cv = Sv ∪ S̃v .
Note that neighbors of v are only among S̃v . Let i denote the smallest
color that does not appear in S̃v . CBIP colors v with color i .

Theorem

For coloring bipartite graphs, we have

ρ(CBIP) ≤ log n.
31 / 39

Proving the log n competitive ratio for coloring
bipartite graphs

Let n(i) denote the minimum number of nodes that have to be presented
to CBIP in order to force it to use color i for the first time. We want to
show that n(i) ≥ d2i/2e by induction on i .
Base cases: clearly we have n(1) = 1 and n(2) = 2.

Inductive step: let v be the first vertex that is colored with color i + 1 by
CBIP. Consider Cv ,Sv , and S̃v as defined.In particular, all colors 1, 2, . . . , i
appear among S̃v . Let u be a vertex in S̃v that is colored i . Let Cu,Su, S̃u
be defined for the vertex u at the time that it appeared. Since u was
assigned color i , then all colors 1, 2, . . . , i − 1 appeared in S̃u. Observe
that S̃u ⊆ Sv . Therefore, there exists vertex u1 ∈ S̃v colored i − 1 and
there exists vertex u2 ∈ Sv colored i − 1, as well.
Without loss of generality assume that u1 ≺ u2. At the time that u2 was
colored, the connected component of u2 had to be disjoint from the
connected component of u1, for otherwise u2 would not have been colored
with the same color as u1.

32 / 39

Finishing the proof for online bipartite graph coloring

Thus, we have Cu1 ∩ Cu2 = ∅. Furthermore, we can apply the inductive
assumption to each of Cu1 and Cu2 to get that |Cu1 |, |Cu2 | ≥ d2(i−1)/2e.
Hence the number of vertices that have been presented prior to v is at
least |Cu1 |+ |Cu2 | ≥ 2d2(i−1)/2e ≥ d2(i+1)/2e.

94 CHAPTER 5. GRAPH PROBLEMS

colored with the same color as u1. Thus, we have Cu1 \ Cu2 = ;. Furthermore, we can apply the
inductive assumption to each of Cu1 and Cu2 to get that |Cu1 |, |Cu2 | � d2(i�1)/2e. Thus, the number
of vertices that have been presented prior to v is at least |Cu1 | + |Cu2 | � 2d2(i�1)/2e � d2(i+1)/2e.
See Figure 5.5.

v, col = i + 1u, col = i

u1, col = i � 1 u2, col = i � 1

eSv

Sv

eSucolors 1, . . . , i

colors 1, ..., i � 1

Figure 5.5: Schematic representation of the inductive step in Theorem 5.6.3.

Observe that the bound in Theorem 5.6.2 di↵ers from the bound in Theorem 5.6.3 by a factor
of 2. It turns out that with more work one can strengthen the lower bound of Theorem 5.6.2. Next,
we present this argument.

Theorem 5.6.4. Let ALG be a deterministic online algorithm for Graph Coloring problem re-
stricted to bipartite graphs in the VAM-PH input model. There is an instance on which ALG uses
at least 2 log n� 10 colors. In other words, we have

⇢(ALG) � log n.

Proof. We give an adversarial strategy that forces ALG to use at least 2 log n � 10 colors on
the constructed bipartite graph. At each point in time during the game between the adversary
and ALG, the adversary keeps track of connected components of vertices presented so far. Each
connected component is a bipartite graph. We refer to each block of the bipartition of the component
as a side. For a given connected component C, we call the color ↵ one-sided if ↵ appears only on
one side of the bipartition of C and not the other. The color ↵ is called two-sided if it appears on
both sides of the bipartition of C. Let ts(C) denote the set of two-sided colors in C. For a given
component C, the adversary will also maintain two vertices – one on each side. Each of the two
vertices is colored with a one-sided color. We use sel(C) to denote the set of two colors associated
with these vertices.

In the following description of adversarial strategy, we will use a merge operation on several
components C1, . . . , Ck. The result of this operation is a single connected component C obtained
as follows: for each i 2 [k] associate a side of Ci with a side of C, add a vertex connected to every
vertex on one side of C, add another vertex connected to every vertex on the other side of C.

The strategy of the adversary is divided in stages. In each stage the adversary uses the first
applicable rule from the following list:

33 / 39

What other classes of graphs have small competitive
ratios for coloring? A tour of some graph classes

Since trees are such a constrained class of graphs, there are many
generalizations. One of the most studied generalizations is that of
bounded tree width graphs. Tree width graphs are further generalized by
the class of (degree) d-inductive graphs.

A graph G is called d-inductive (also called d-degenerate) if there is an
ordering of vertices such that every node u has at most d neighbors
appearing after u in the ordering. When a d-inductive graph G is given in
the VAM-PH input model, the order in which the nodes are presented is
adversarial and can be different from an inductive ordering.

34 / 39

Continued tour of some graph classes and their
online coloring

If the nodes of G are presented in the reverse order of an inductive order
then the FirstFit algorithm uses at most d + 1 colors. This implies that
every d-inductive graph is (d + 1)-colorable. We show in the text that
when a d-inductive graph is given in an adversarial VAM-PH model, the
FirstFit algorithm uses at most O(d log n) colors. In particular, this
generalizes the fact that FirstFit achieves competitive ratio log n on trees,
noting that trees are 1-inductive.

Theorem

FirstFit uses at most O(d log n) colors on any d-inductive graph G under
the VAM-PH input model.

35 / 39

Continued tour of graph classes

An interval graph is the graph induced by the intersection of intervals on
the line. Interval graphs are a special case of chordal graphs which in turn
are perfect graphs. There is a characterization of chordal graphs using the
concept of a perfect elimination ordering. For a graph G , an order
v1, v2, . . . , vn is a prefect elimination order if for all i ,
Nbhd(vi) ∩ {vi+1, . . . , vn} is a clique. Equivalently
Nbhd(vi)∩ {vi+1, . . . , vn} does not have 2 independent (i.e. non adjacent)
nodes.

For any graph G , we have χ(G) ≥ ω(G) where χ(G) is the chromatic
number of a graph and ω(G) is the clique number of a graph. A perfect
graph G is one that satisfies χ(G) = ω(G).

We can generalize chordal graphs to the class of d-inductively independent
graphs which have a vertex ordering v1, v2, . . . , vn such that
Nbhd(vi) ∩ {vi+1, . . . , vn} does not have d + 1 independent nodes.

Clearly Every d-inductive graph is d-inductively independent.
36 / 39

Online coloring of interval graphs

For interval graphs, it is known that First Fit has a constant (but not
optimal) competitive ratio. However, we have the following:

Theorem

For every deterministic online coloring algorithm ALG for interval graphs,
there is an interval graph such that ALG uses 3ω − 2 colours. There is a
deterministic online coloring algorithm ALG ∗ that colors every interval
graph G using at most 3ω(G)− 2 colors. Therefore, ρ(ALG ∗) = 3.

Albers and Schraink (2017) provide randomized online coloring lower
bounds for many graphs classes including trees, chordal graphs, and
d-inductive graphs. The tree lower bound also implies that planar and
bipartite graphs also have an Ω(log n) lower bound on the randomized
competitive ratio.

37 / 39

Sketch of the interval coloring algorithm

The algorithm might be called online recursive greedy
For a sequence of initial nodes in the interval graph, the congestion
number (i.e., clique number) is the maximum number of edge
intersections. For each clique number k , we can recursively define an
algorithm RECGk :

The base case trivially colors all nodes witn color 1.

Induction step assuming RECGk has been defined. Consider the sequence
σ = v1, . . . vi which we assume has clique number at most k + 1. Let
A = {vj1 , . . . , vjr } be a minimal set of nodes (i.e., intervals) such that
σ′ = σ \ A can be colored with k colors.
If σ′vi+1 has cliques number k , then color vi+1 using RECGk . Otherwise
use color k + 1 for vi+1.

38 / 39

The online interval coloring algorithm

The online algorithm uses RECGk until clique number k + 1 is created by
some new vertex vi and then we start using RECGk+1.

The proof of the 3ω − 2 competitive ratio relies on showing that Avi can
be colored using only 3 new colors.

The ends our discussion of Chapter 5.

Chapter 6 concerns two perhaps seemingly unrelated problems:

1 Maximizing a non-monotone submodular function (without any
constraints)

2 Max-Sat

39 / 39

	Week 4

