
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

September 25, 2019

1 / 38

Announcements

There is no lecture on Wednesday, October 9

I plan to give full lectures this week and next. Then starting
Wednesday October 23, I would like to hold the class a 1/2 lecture,
and 1/2 reading course reporting.

I would therefore like everyone, taking the course for credit or not for
credit, to choose a chapter fo their part of the reading course. As I
said, we would use 1/2 of the time to give short presentations on the
reading to date.

At the end of the term, we can summarize all the readings.

2 / 38

Week 3 Agenda

This week we will do a fast tour of some topics in chapter 4. Chapter 4
presents a number of results that occured in the “early days” of
competitive analysis. In addition, many of these early results introduced
various proof techniques that have been used frequently in both online and
offline algorithm analysis. .

Todays agenda:

The potential function method

The list accessing problem

The k-server problem
1 The deterministic lower bound
2 Another special case: k servers on the line
3 The work function algorithm

Metrical task systems

Load balancing on other other machine models and circuits

3 / 38

The potential function method

The potential function method arose in the amortized analysis of data
structures. The idea is to smoothen out the costs of different operations
(rather than try to bound every operation). More specifically, the idea is
to introduce a virtual cost for each operation so as to make lower cost
operations have a somewhat higher cost resulting in a lower cost for more
expensive operations. As we say in the text, this is somewhat akin to a
very familiar idea as used in say condo developments where each unit pays
a regular maintenance costs so as to offset potentially expensive future
repairs.

So here is the method as used in amortized analysis: Let S denote a
configuration or state of a data structure and let si be the state at time i
when operation opi is about to be performed. In particular, s0 is the state
just before the first operation has taken place. We define a potential
function Φ : S → R. We use this potential function to convert the
underlying cost cost(opi) of an operation to a virtual or amortized cost
c̃ost(opi) = cost(opi) + Φ(si)− Φ(si−1).

4 / 38

Potential function method continued

So consder a sequence of n operations or requests {ri}. Then by
telescoping we have:

n∑

i=1

c̃ost(ri) =
n∑

i=1

cost(ri) + Φ(si)−Φ(si−1) =
n∑

i=1

cost(ri) + Φ(sn)−Φ(s0)

.

Our goal will be to define Φ so that Φ(sn)− Φ(s0) is bounded while also
being able to show that the amortized cost for any request will not be
much more than the amortized cost in any optimal solution.

5 / 38

The list accessing problem

In the static list accessing problem we have an ordered list of size ` (e.g.
think of a linked list of unsorted items) of keys (say, for accessing data) in
[m] = {1, 2, . . . ,m}. The goal is to process an online sequence of requests,
r1, r2, . . . , rn where each ri is a request for (the data associated with) some
k ∈ [m].

If the requested item is at position k in the list, the cost for accessing the
that element is k. At any time, we are also allowed to swap any two
adjacent elements. Here are two cost models for such swaps:

1 Each swap costs 1
2 Swaps that involve request ri can be done for free as part of the i th

request. Other swaps cost 1.

The objective is to minimize the total cost for serving a sequence of
requests.

There is also a dynamic version of list accessessing where elements can be
removed or new elements inserted. We will just discuss the static version
so as to illustrate the potential function method.

6 / 38

Some list accessing algorithms

At any point in time i , the state of the list is represented by a permutation
σi : [m]→ [m] denoting the ordering of the list just after request ri .
Namely, σi (j) is the location of element j . We can assume that the initial
permutation σ0 is the identity permutation.

Move to front (MTF): After processing the i th request, move that
item to the front.

Transpose: After processing the i th, swap it with the immediately
preceding item.

Frequency count (FC): Maintain an array F : [m]→ Z≥0 such that
F [j] is the number of times element j has been accessed so far.
Maintain σi such that the elements are ordered in the order of
non-increasing F [j].

We note that these algorithms do not do any swaps except for free swaps.
However, OPT might use additional swaps and we want online algorithms
to compete against OPT no matter how OPT behaves.
It is interesting to note that neither Transpose nor FC are competitive.

7 / 38

The competitive ratio for MTF

We will not quite follow our text version and use the second cost measure
where transposes involving the item just requested will be free. In the
second cost measure, the competitive ratio is 2. This latter cost measure
is well justified since it is easy to move the requested item to the front of a
linked list.

The competitive ratio is proven by a potential function argument. Let
(σ1, . . . , σn) be the list orders of MTF. Let (σ′1, . . . , σ

′
n) denote the list

orders of some optimal algorithm. We say that a pair of elements j and k
form an inversion with respect to σi and σ′i if either (1) σi (j) < σi (k) and
σ′i (j) > σ′i (k), or (2) σi (j) > σi (k) and σ′i (j) < σ′i (k). That is,, a pair of
elements form an inversion w.r.t. σi and σ′i if the two elements appear in
different orders in σi and σ′i . The value of the potential function at step i ,
denoted by Φi , is defined as follows:

Φi = the number of inversions w.r.t σi and σ′i .

8 / 38

The competitive ratio for MTF continued

For MTF, the cost(i) = cost(σ(ri)) = σi (ri)− 1 for the i th request since
MTF does not do any additional swaps not involving the accessed item.
(It would be 2σi (ri)− 1 if swaps for the accessed element were not free).
Hence we want to analyze c̃ost(i) = cost(i) + Φi − Φi−1.

Φ0 = 0 since MTF and OPT are both in the same initial state.
Furthermore, Φi ≥ 0 for all i .

Hence to establish the competitive ratio, it suffices to show that
c̃ost(i) ≤ 2OPT (ri)

Assume first that OPT does not change after the i th request. That is,
σ′i = σ′i+1.

9 / 38

The analysis of MTF contined

Here is the analysis assuming OPT does not changes its state. (See figure
4.1 in text but note there the figure is ilustrating the change in going from
state at time i to time i + 1.)

c̃ost(i) = cost(i) + Φi − Φi−1
≤ σi (ri)− 1 (the true cost of the operation)

+ (σ′i (ri)− 1) (bound on positive change for Φ)

− (σi (ri)− σ′i (ri)) (bound on negative change for Φ)

≤ 2σ′i (ri) t

Now suppose that OPT does use additional (non-free) swaps
following request i and before request i + 1. Each such swap, will
result in at most one inversion (raising c̃ost(i) by 1), but will also
make OPT incur an additional cost of 1, so that the change in
c̃ost(i) is offset by the additonal cost to OPT .

10 / 38

Some additional comments about list accessing and
MTF

The deterministic competitive ratio ρ ≤ 2 for MTF is a tight
asymptotic bound. (A more precise MTF bound is
2− 1

`+1 ≤ ρ ≤ fac1` for a static list of size]ell . In the text we use an
averaging argime to show a tight bound of 4 for the case when all
swaps count 1. A more general analysis can be made for any defined
costs for the two different types of swaps (i.e, those involving and
those not involving the recented accessed items).

When there are free swaps, the 2-competitive ratio also holds in the
dynamic case with inserts and deletes.

Neither TRANSPOSE nor FC are constant competitive.

MTF has been utitlized for compression and has been shown to
match Shannon’s entropy bound as well as outperforming other well
known compression schemes (eg GZIP) on real data.

11 / 38

A randomized algorithm for list-accessing

Consider the following randomized algorithm called BIT .

58 CHAPTER 4. SOME CLASSICAL PROBLEMS

list and otherwise (B[i] = 0) leave ri in place. The pseudocode is given in Algorithm 10. Observe
that this algorithm uses m bits of randomness that is independent of the input sequence length
n. In the discussion of the simple 1-bit random algorithm for the proportional knapsack problem
in Chapter 3, we referred to that algorithm as being barely random. We can utilize the barely
randomized terminology to refer to any randomized algorithm where the number of random bits
does not depend on the length of the request sequence. During the execution of BIT, the values of
B[i] are never resampled after the initial phase; instead, the values simply keep flipping on relevant
requests.

Algorithm 10 Simple randomized algorithm for the List Accessing problem.

procedure BIT
for i 1 till i = m do

B[i] a uniformly random bit from {0, 1}
�1 the identity permutation on [m]
i 1
while i  n do

Process the new request ri 2 [m]
B[ri] 1�B[ri]
if B[ri] = 1 then

�i+1 the permutation obtained from �i by moving ri to the front — see Algorithm 9
else

�i+1 �i

i i + 1

Next we analyze BIT against an oblivious adversary and show that it improves upon the MTF
algorithm: the asymptotic competitive ratio of BIT is bounded by 11/4 = 2.75 instead of the 4 of
MTF.

Theorem 4.2.4.

⇢OBL(BIT)  11

4
.

Proof. We prove the statement by adapting the proof of Theorem 4.2.1. Thus, the proof is going
to be based on the potential function method. We shall reuse the notation of Theorem 4.2.1 and
its proof, so the reader should familiarize themselves with that proof first.

Consider a particular time step i. Suppose that a pair of elements {j1, j2} form an inversion.
Then we define its type as B[arg max(�i(j1),�i(j2))]. In words, the type of an inversion is the
current state of the bit corresponding to the element of the pair that appears later according to �i.
Let �i

b denote the number of inversions of type b 2 {0, 1} with respect to �i+1 and �0
i+1. Define

the value of the potential function as follows:

�i = 2�i
0 + 3�i

1.

Observe that �0 = 0 and �i � 0 for all i. The amortized cost is defined as usual:

gcosti = costi + �i � �i�1.

To establish that ⇢OBL(BIT)  11
4 , it su�ces to show that

E(gcosti)  (11/4)�OPTi,

12 / 38

Comments on algorithm BIT

Note that the number of random bits used by BIT is independent of
the number of requests. Such algorithms are sometimes called “barely
random”. A more restrictive notion of being barely random would
necessittate using only a constang number of bits (as in the
proportional knapsack problem where only 1 bit of randomness is
needed).

When the list accessing cost model costs 1 for all swaps, we show
that the (tight) competitive ratio of BIT is 11

4 . For the cost model
where we allow free swaps, the (tight) competitive ratio is 7

4 .

BIT is not the optimal online algorithm. There is an algorithm that
achieves ratio 8

5 .

13 / 38

Revisiting the k-server problem

We recall the k server problem from the last lecture.

Let M be a metric space. In the k-server problem, a request sequence
r1, . . . , rn is a sequence of points ri ∈ M that must be served by one of k
servers. If a request ri is not occupied by a server, then an algorithm must
move one of the k servers (say located at some location r ∈ M) at a cost
of d(r , ri). The goal is to minimize the total cost of serving all requests.

We mentioned the k server conjectures (for both deterministic and
randomized algorithms). The deterministic conjecture is arguably the
major reason for all the initial theoretical interest in online analysis. The
deterministic conjecture is that for every metric space the optimal
competitive ratio is k . Today we will see that
(1) The competitive ratio is at least k for every metric space M and
(2) The ratio k can be achieved for another (beyond paging) important
specific metric space.

14 / 38

Lower bound for k-server problem

Theorem

Let M be an arbitrary metric space with at least k + 1 distinct points. Let
ALG be a deterministic online algorithm for the k-Server problem with
respect to M. Then, we have ρ(ALG) ≥ k .

For the proof we need to first establish a lower bound for the cost of ALG
to process a sequence of requests r1, . . . , rn.

We can assume that the algorithm is lazy in the sense that it only moves a
server to cover a request and will have servers on distinct points in the
metric space. We consider any k + 1 points {p1 . . . , pk+1} in M, and
assume both the algorithm and OPT are in the same initial configuration
occupying say C0 = {p1 . . . , pk}. As we had in the paging lower bound,
the adversary will be a cruel adversary and at each time will select the
unique point that is not occupied.

15 / 38

k-server bound continued

Let yi denote the position of the server that is moved to process request
xi . We have ALG (x1, . . . , xn) =

∑n
i=1 d(yi , xi) =∑n−1

i=1 d(xi+1, xi) + d(yn, xn) ≥∑n−1
i=1 d(xi+1, xi) since since xi+1 = yi .

Now we need to upper bound the cost of OPT and we will do so using the
same averaging technique used for the list accessing problem. Consider k
algorithms ALGi for i ∈ [k] defined as follows. Initially, ALGi starts at
configuration C0. To service x1 = pk+1, algorithm ALGi uses the server at
pi . Observe that there exists exactly one location that is covered by all
ALGi , namely, pk+1. Algorithms ALGi are lazy and they behave so as to
maintain this invariant. We illustrate it with an example. Suppose that
x2 = p5 arrives. Since x2 is covered by all ALGi with i 6= 5, none of these
algorithms move a server. The only algorithm that has to move a server is
ALG5. Since we want to maintain that at all times there is exactly one
point from X that is covered by all algorithms ALGi , ALG5 has to move
the server that is presently at location pk+1.

16 / 38

Finishing the proof

Let T (x1, . . . , xn) =
∑k

i=1 ALGi (x1, . . . , xn) denote the sum of costs of all
algorithms ALGi . By induction we have that at each time step j only one
algorithm has to move a server and moreover the algorithm moves a server
that is at location xj−1. Thus, the total cost of all the {ALGi} is

T (x1, . . . , xn) =
∑n

j=2 d(xj , xj−1) +
∑k

i=1 d(pi , pk+1), where the second
term is from the initialization procedure to establish the invariant when
processing x1. This second term is a constant and can be ignored.
Therefore, the average cost over the k algorithms is

1

k
T (x1, . . . , xn) =

1

k

n−1∑

j=1

d(xj+1, xj).

In particular, one of the algorithms achieves this cost, hence
OPT (x1, . . . , xn) ≤ 1

k

∑n−1
j=1 d(xj+1, xj). Thus, we have

ALG (x1, . . . , xn) ≥
n−1∑

i=1

d(xi+1, xi) ≥ kOPT (x1, . . . , xn)

.
17 / 38

A k-competitive algorithm for the k-server problem
on the line

One of the early k-server results is for the metric space defined by points
on a line. This can be the continous real line or a finite set of points in R
where d(x , y) is the Euclidean distance. Unlike the previous specific
problems (e.g., paging, list accessing, bin packing, makespan), this was a
new problem not previously studied before competitive analysis.

It is easy to see that the natural greedy algorithm (e.g., serve a request by
the nearest server) will lead to an arbitrarily big competitive ratio. The
bad example for the greedy algorithm would have one server oscilating
back and forth beteen two points at one end. To get an idea as to how to
prevent this we might think about when an adjacent server can come to
the rescue.

18 / 38

The double coverage (DC) algoerithm

Here is how the elegant “double coverage” DC algorithm works. Let
{p1, . . . , pk} be the initial locations of the servers. Consider a new request
xj . If xj is to the right (respectively, left) of the right-most (resp.
left-most) server then the algorithm uses the right-most (resp, left-most)
server to serve xj . The remaining case is when xj is in between adjacent
servers i∗ and i∗. i.e., pi∗ ≤ xj ≤ pi∗ and there are no other servers
between pi∗ and xj , and xj and pi∗ . Then DC starts moving both servers i∗

and i∗ towards xj at the same speed until one of the servers reaches xj .
We can assume a fixed tie breaking scheme if both servers arrive
simultaneoujsly to serve the request.

Notice that DC, as stated, is not a lazy algorithm. Although we can
modify DC to be lazy (by maintaing the “virtual location of each server),
it is conceptually easier to analyze the non-lazy version of the algorithm.
Also observe that the relative order of servers p1 ≤ p2 ≤ · · · ≤ pk can be
easily preserved during the execution of the algorithm.

19 / 38

The DC algorithm for k servers on the line
64 CHAPTER 4. SOME CLASSICAL PROBLEMS

Algorithm 11 Double Coverage algorithm for the k-Server problem on a line.

procedure DC
. C0 is the initial pre-specified configuration.
Initialize pi 2 R to the initial coordinate of server i according to C0

. we have p1  p2  · · ·  pk, which is maintained during execution
j 1
while j  n do

The new request xj 2 R arrives
if xj > pk then . request is to the right of the right-most server

pk xj . use the right-most server to process xj

else if xj < p1 then . request is to the left of the left-most server
p1 xj . use the left-most server to process xj

else . request is in between the right-most and left-most servers
i⇤ arg mini{pi | pi � xj} . find a server that is immediately to the right of xj

i⇤ arg maxi{pi | pi  xj} . find a server that is immediately to the left of xj

� min(|pi⇤ � xj |, |pi⇤ � xj |) . distance until one of the servers reaches xj

. Move the two servers
pi⇤ pi⇤ � �
pi⇤ pi⇤ + �

Cj the multiset formed by p1, . . . , pk

j j + 1

Proof. Consider an input instance x1, . . . , xn. As discussed before, we use p1  p2  · · ·  pk to
denote the sorted positions of the servers during the execution of the DC algorithm. Similarly, let
q1  q2  · · ·  qk denote the sorted positions of the servers during the execution of OPT . We use
the potential function method to establish the result. We use the following potential function:

� = k
kX

i=1

|pi � qi| +
X

i<j

|pi � pj |.

Thus, we can write � = �1 + �2, where �1 = k
Pk

i=1 |pi � qi| and �2 =
P

i<j |pi � pj |. Since we
shall analyze how the potential function changes in each step j, we assume that � refers to the
current step under consideration and so do the pi and the qi. Thus, we drop index j from all the
variables to reduce clutter in our notation. Let �� denote the change in potential, �DC denote
the true cost incurred by DC, and �OPT denote the cost incurred by OPT . In processing xj both
OPT and DC have to move. By the potential function method, our goal is to show that after both
moves we have

�DC + ��  k�OPT. (4.3)

We can prove this by showing that the inequality holds for the move of OPT in isolation followed
by the move of DC, i.e., we can analyze the inequality one move at a time. We provide the summary
of how di↵erent moves can a↵ect DC, OPT , and �� in Table 4.1. It is relatively straightforward
to verify that the table is correct and that equation (4.3) follows from the summary in the table.

20 / 38

Algorithm DC is k-competitive

We will prove that ρ(DC) ≤ k · OPT using a potential function argument.
Suppose that p1 ≤ p2 . . . ≤ pk and q1 ≤ q2 . . . qk are (respectively) the
server locations of DC and OPT at any time. The potential function is:
Φ = k

∑k
i=1 |pi − qi |+

∑
i<j |pi − pj |. Note that the first summation is

the min distance matching between the {pi} and the {qi}
Aside: Finding an appropriate potential function is an art. In class we did
some reverse engineering to give a lkittle inisght as to how this potential
function might have been derived. As in the list accessing analysis, we
have Φ ≥ 0 and Φ0 = 0.
We can write Φ = Φ1 + Φ2, where Φ1 = k

∑k
i=1 |pi − qi | and

Φ2 =
∑

i<j |pi − pj |. Since we shall analyze how the potential function
changes in each step, we assume that Φ refers to the current step under
consideration and so do the pi and the qi . Let ∆Φ denote the change in
potential, ∆DC denote the true cost incurred by DC, and ∆OPT denote
the cost incurred by OPT . In processing xj both OPT and DC have to
have a server on xj . By the potential function method, our goal is to show
that after both moves we have

∆DC + ∆Φ ≤ k∆OPT . (1)

21 / 38

Finishing the analysis for DC

We will prove the required inequality by thinking of OPT moving first and
then DC moving. The changes to DC , OPT and ∆(Φ) are provided in the
following table in the text.

4.4. K-SERVER PROBLEM 65

Move type �DC ��1 ��2 �DC + �� �OPT

OPT moves 0  k · �OPT 0  k · �OPT �OPT

DC moves right-most or
left-most server

�DC �k · �DC (k � 1) · �DC 0 0

DC moves two servers
for an “in-between” re-
quest

�DC  0 ��DC 0 0

Table 4.1: Summary of changes to DC, OPT , and potential function during one step.

4.4.5 Work Function

Let x = (x1, . . . , xn) be the request sequence. We write xt to denote the subsequence consisting of
the first t elements, i.e., xt = (x1, . . . , xt). Thus, x0 is the empty sequence and xn = x. Recall
that C0 denotes the initial pre-specified configuration.

Definition 4.4.12. The work function wx : Xk ! R�0 is defined with respect to the request
sequence x = (x1, . . . , xn) and initial configuration C0. The work function maps configurations
in the metric space M to real numbers with the following meaning: wx(C) is the minimum total
distance that is needed to process all requests x (in order) and end up in configuration C. Note
that C can be an arbitrary configuration and is not required to contain xn or, in fact, any xi.
Formally, wx(C) is defined as follows

wx(C) = min
C1,...,Cn

(
nX

i=0

d(Ci, Ci+1) : 8i 2 [n] ri 2 Ci and Cn+1 = C

)
.

We will consider work functions with respect to prefixes xt of x, i.e., wxt
. To simplify notation

we will denote these work functions by wt. Note wx = wn.

The following lemma collects a number of observations regarding the work function.

Lemma 4.4.3. 1. w0(C) = d(C0, C).

2. OPT (x) = minC{wn(C)}.

3. wt(C) � wt�1(C).

4. If xt 2 C then wt(C) = wt�1(C).

5. If xt 62 C then wt(C) = minx2C{wt�1(C � x + xt) + d(xt, x)}.

6. wt(C) = minx2C{wt�1(C � x + xt) + d(xt, x)}.

Proof. 1. The meaning of w0(C) is the minimum distance to end up in C without processing
any requests. Since the initial configuration is C0 we have to move from C0 to C, the answer
is given precisely by d(C0, C).

2. OPT is the minimum total distance required to process the entire sequence of requests starting
from C0 and ending in some configuration C.

3. This is clear since for wt you need to process more requests than for wt�1.

22 / 38

Extending the line algorithm to the metric space
defined by a tree

Let T be a tree embeded in the plane. For x and y on the tree, the
distance d(x , y) is the Euclidean distance of the unique path between x
and y . Of course, the line can be viewed as a tree and we want to extend
the DC algorithm to this tree metric. The extension is simpliy that all
servers adjacent to the request move at the same speed toward the
request. (In the line there are either one or two adjacent servers. As in the
line DC algorithm we can assume a fixed tie-breaking rule.

With this change in the DC algorithm, the same potential function
(Φ = k · min distance matching +

∑
i<j |pi − pj |) can be used to show

that the tree DC algorithm is k competitive. We can again consider two
cases, namely that either there is exactly one DC server adjacent to the
request or there are some m ≤ k servers adjacent to the request that arte
moving and k −m servers that are not moving. (In fact, the latter case
subsumes the first case.)

23 / 38

The weighted paging problem

In the weighted paging problem, we again have k fast cache or main
memory pages and a large slow additional memory M. Now we assume
that each page p has a weight w(p) which is the cost to bring p into the
cache. By assumming sufficiently long sequences of pagve requests, we
can assume that the cost of bring the page p into and out of the cache,
each cost w(p)/2.

We model the weighted paging problem as the k-server problem for the
tree metric we just defined. Namely, conider the star graph where the
leaves represent pages. The distance from a node p to the center node is
w(p)/2. We can assume we initially start with the tree DC algorithm and
OPT on the same set of leaves. Now for every request, all servers are
adjacent and start moving toward the request.

24 / 38

The work function algorithm

We now return to the general k-server problem (i.e., for an arbitrary
metric space). As we emphasized, the k-server problem and the k-server
conjecture has attracted much attention. As I mentioned, there is no
a-priori reason to believe that the cometitive ratio should just be a
function of k and not of |M|, the size of the metric space.

After a number of special metric spaces were considered, the work
function algorithm was shown to be 2k competitive. We will just present
the algorithm and not try to present the proof. There have been a few
attempts to simplify the proof but still it remains a techically challenging
analysis.

Although the analysis is challenging, the algorithm itself is reasonably well
motivated, based on an offline optimal dynamic programming solution. Let
x = (x1, . . . , xn) be the request sequence. We write x≤t to denote the
subsequence consisting of the first t elements, i.e., x≤t = (x1, . . . , xt).
Thus, x≤0 is the empty sequence and x≤n = x . Recall that C0 denotes the
initial pre-specified configuration.

The work function wx : X k → R≥0 is defined with respect to the request
sequence x = (x1, . . . , xn) and initial configuration C0. The work function
maps configurations in the metric space M to real numbers with the
following meaning: wx(C) is the minimum total distance that is needed to
process all requests x (in order) and end up in configuration C . Note that
C can be an arbitrary configuration and is not required to contain xn or, in
fact, any xi .

25 / 38

The optimal offline dynamic programming solution

Formally, wx(C) is defined as follows

wx(C) = min
C1,...,Cn

{
n∑

i=0

d(Ci ,Ci+1) : ∀i ∈ [n] ri ∈ Ci and Cn+1 = C

}
.

We will consider work functions with respect to prefixes x≤t of x , i.e.,
wx≤t

. To simplify notation we will denote these work functions by w≤t .
Note wx = w≤n.

It is easy to see that OPT = minC{w≤n(C)}.
The work function algorithm can be thought of as an online approximation
to the optimal dynamic program.

26 / 38

Defining the work function algorithm (WFA)

The algorithm is easy to describe: it is a lazy algorithm that processes
request xt by moving the server x ∈ Ct−1 that minimizes
w≤t−1(Ct−1 − x + xt) + d(xt , x). Here is the pseudocode.

66 CHAPTER 4. SOME CLASSICAL PROBLEMS

4. There are two possible strategies to process x1, . . . , xt and end up in C. The first strategy is
to process x1, . . . , xt�1 and end up in C and stay in C, since xt 2 C. The total distance of the
first strategy is wt�1(C). Another strategy is to process x1, . . . , xt�1 and end up in C 0 6= C
and then move from C 0 to C. The total distance of the second strategy is wt�1(C

0)+d(C, C 0).
the definition of w, we have wt�1(C)  wt�2(C

0)+d(C 0, C)  wt�1(C
0)+d(C 0, C), where

the last inequality follows from (3.).

5. In this case xt is not in C but we still have to process it before moving to configuration
C. Consider the time immediately after some server processed xt. The order in which we
reposition servers into configuration C does not matter. Thus, we can assume that the server
that processed xt is repositioned last. The other servers occupy all but one of the positions in
C, say, x. The optimal distance of achieving this step is wt(C�x+xt) = wt�1(C�x+xt) (by
the previous item). Then it is left to move the server from xt to x, which adds distance d(xt, x)
to the total cost. Overall, processing xt and moving to C costs wt�1(C � x + xt) + d(xt, x).
Since we don’t know which server is the best to process xt, we have to minimize over all
choices of x.

6. This is a straightforward consequence of the previous two items.

The observations in the lemma can be used to come up with an optimal o✏ine algorithm for
the k-server problem based on dynamic programming: item (1) gives the base case and item (6)
shows how to fill out the table. Exercise 12 asks you to fill in the details.

4.4.6 Work Function Algorithm

In this section we describe the online algorithm that achieves the best known upper bound for
the k-Server problem — the Work Function algorithm, or WFA for short. The algorithm is easy
to describe: it is a lazy algorithm that processes request xt by moving the server x 2 Ct�1 that
minimizes wt�1(Ct�1 � x + xt) + d(xt, x). Algorithm 12 provides the pseudocode.

Algorithm 12 The Work Function algorithm for the k-Server problem on general metrics.

procedure WFA
. C0 is the initial pre-specified configuration.
j 1
while j  n do

The new request xj arrives
x arg minx2Cj�1

{wj�1(Cj�1 � x + xj) + d(xj , x)}
Cj Cj�1 � x + xj

j j + 1

We state the best known upper bound on the performance of WFA in the following theorem.
We omit the proof of this result, as it is quite long and involved and there are already several
excellent expositions listed in the historical notes at the end of this chapter.

Theorem 4.4.4.
⇢(WFA)  2k � 1.

It is possible that ⇢(WFA) = k, but no one has been able to prove it yet. The claim that
⇢(WFA) = k has only been established for certain special cases of metrics, e.g., M = (X, d) such
that |X| = k + 1.

27 / 38

Metrical task systyems

Just preceding the introduction of the k-server problem, metrical task
systems (MTS) were introduced as the first abstract model for studying
online computation and competitive analysis. This framework can model
specific problems such as paging and list accessing, as well as finite
k-server games. The generality of the model precludes the more precise
results established for the problems we have been discussing. However, the
MTS model fascilitated the introduction of some of the basic concepts
used in competitive analysis. In addition, the power of randomization for
online algorithms was first demonstrated within the MTS model.

A MTS is a pair (M,R) where M = (S , d) is a metric space and R is a
set of tasks. We think of the set S = [1,N] as states of a system. A task
r is a tuple r(1), r(2), . . . , r(N) where r(i) denotes the cost of processing
request r in state i ∈ S . At any point in time, the computation is in some
state i and to process a new request r , it can move to a state j (at the
transition cost d(i , j) and processing cost r(j).

Note: When modeling specific problems by an MTS, we usually need an
excessive number of states which precludes good bounds on the
competitive ratio.

28 / 38

Metrical task systems continued

Let σ = r1, . . . , rn be a sequence of requests and let ALG [i] denote the
state of an algorithm ALG after processing the first i requests. Then the
cost ALG (σ) of processing the sequence σ by ALG is the sum of the
transition costs plus the sum of the processing costs. That is,

ALG (σ) =
n∑

i=1

d(ALG [i − 1],ALG [i]) +
n∑

i=1

r(ALG [i])

We consider an arbitrary MTS to be one where we place no restrictions on
the set of allowed tasks. For metrical task systems, we have the folowing
for an arbitrary MTS:

For anyalyzing an MTS, it is sufficient to consider elementary tasks
where for each i ∈ S = [1,N], an i th elementary task is a vector
(0, 0, . . . , τ, 0, . . . 0) with a processing cost τ > 0 in the i th

component.

29 / 38

Continuation of MTS results

A cruel adversary is one whose i th request is the elementary task ri
where ri (j) is the elementary task with τ = ε > 0 in component
ALG [i − 1]. Looks familiar?

Using a cruel adversary, there is an asymptotic lower bound on the
competitive ratio; namely, ρ ≥ 2N − 1.

There is an optimal dynamic program for computing the optimal
solution to a request sequence σ = r1, . . . , rn. Namely,
wi+1(s) = minx{wi (x) + d(x , s) + ri+1(s)}
And we have an online WFA (as in the k-server) problem; namely,
suppose that si is the state that the WFA is in after processing
r1, . . . , ri . Let wi (s) be the cost for serving r1, . . . , ri and ending in
state s. Then
si+1 = argmins′{wi+1(s ′) + d(si , s

′)} with
wi+1(si+1) = wi (si+1) + ri+1(si+1)

30 / 38

Wrapping up discussion of MTS results

The online WFA for an MTS with N states is ρ = 2N − 1 competitive

We can conclude that for deterministic online algorithms, 2N − 1 is
the precise asymptotically optimal competitive ratio.

This raises the question as to whether randomization helps for the MTS
problem. The answer is that there is a polylog(N) randomized algorithm
for every MTS. We will postpone this result until after we discuss
hierarchical separated trees (HSTs) and the embedding of arbitrary metric
spaces into HSTs with small distortion.

31 / 38

A randomized algorithm for the MTS problem on
the uniform metric space

Let M = (S , d) be the unifrom metrc space on N = |M| points; i.e.,
d(x , y) = 1 for all x 6= y . Then there is a randomized online MTS that
achieves competitive ratio 2HN Here is the algorithm. Note the similarity
to the 2Hk result for the paging algorithm MARK .

The algorithm operates in phases. At the start of a phase, all states are
unsaturated and the algorithm goes to a uniformly at random state s ∈ S .
During a phase, the algorithm remains in a state until it becomes
saturated by the task costs. (Here we we use the fact that tasks can be
partitioned in small elementray tasks.) When a state becomes saturated
the algorithm moves to a random unsaturated state. When all states are
saturated the algorithm begins a new phase.

32 / 38

More general load balancing problems

We have studied the makespan problem for m identical machines and have
a pretty good understanding of the competitive ratio. The makespan
problem falls under the category of load balancing, where in different
machine models, all jobs have to be scheduled while trying to minimize
some measure of balance. Load balancing also includes, routing calls in
the virtual circuit model.

Lets first consider the restricted machines model. In the restricted
machines, a job Jj is described by a pair (pj , Sj) where as before pj is the
load or time for job Jj and Sj ⊆ {M1,M2, . . . ,Mm} is the subset of
machines on which job Jj can be scheduled. The makespan objective is as
in the identical machines case. That is, we wish to minimize the
maximjum load on any machine.

33 / 38

The deterministic competitive ratio for the
restricted machines model

We have very precise results for the makespan problem in the restricted
machines model.

Theorem

The competitive ratio ρ for the restricted machines model satisfies:
dlog(m + 1)e ≤ ρ ≤ dlogme+ 1

The upper bound is achieved by the natural greedy algorithm. Namely,
assign each job to a machine having the lightest load, breaking ties
arbitrarily (i.e. for any fixed ordering of the machines).
The lower bound holds even when each job has unit load and has exactly
two allowable machines.

34 / 38

The randomized competitive makespan ratio for the
restricted machines model

A set of jobs J induces a bipartite graph GJ = (U ∪ V),E) where an
edge (Jj ,Mi) exists iff Mi is an allowable machine for job Jj .

For randomized algorithms, the competitive ratio ρ satsifies
dln(m + 1)e ≤ ρ ≤ dlnme+ 1

For the upper bound we need to assume that GJ has a matching. It is not
known if the assumption that a matching exists is necessary. The upper
bound is again greedy (i.e., assigning to a least loaded machine) but now
breaks ties by initially choosing a random order of the machines. The
randomized algorithm is based upon the seminal KVV maximum bipartite
matching algorithm that we will consider in Chapter 5 of the text.

35 / 38

Makespan in the related machines model

While the deterministic greedy algorithm is optimal for the restricted
machines model, it does not provide a constant competitive ratio for the
following machine model.
In the related machines model, each machine Mi has a speed si ≥ 1. As in
the identical machines model, an input item is a job Jj described by its
processing time pj . When a job Jj is assigned to some machine i , the total
processing time on machine i is increased by pj/si . In the identical
machines case, we also referred to pj as the load of the job, this allowed us
reserve the use of time to represent the duration of a job. In the related
machines model, time is implied.

It can be shown that the natural greedy algorithm has competitive ratio
Θ(logm) for the related machines model. There is, however, a constant
competitive degterministic online algorithm for makespan in the related
machines model.

36 / 38

A general idea that we will use for the related
machines model

In establishing a constant competitive ratio for the related machines model,
there is an idea that can be used for any machine model and also in many
other online settings. This is the idea of assuming that a good bound on
the optimal makespan is known. Namely, we have the following lemma:

Lemma

Let B > 0, Suppose there exists an algorithm ALGB that is c-competitive
on any input such that the optimum makespan value is at most B.
Furthermore ALGB will report failure if the optimum makespan value is
more the 2B. Then there exist a 4c-competitive algorithm for the
makespan problem without any knowledge of the optimum value

37 / 38

The competitive algorithm for the related machines
model
Assume that the machines are ordered so that s1 ≤ s2 ≤ sm so that
machine M1 (resp. Mm) is the slowest (resp. fastest) machine.
The following algorithm we will can call SLOWFITB achieves a
2-competitive ratio when restricted to jobs which can be optimally
scheduled within makespan B. Hence using the Lemma there is an
8-competitive algorithm for the makespan problem in the related machines
model. (This is not the best know constant.)

4.7. LOAD BALANCING 69

Algorithm 13 Online algorithm for makespan when B is an upper bound on the optimal value.

procedure SLOWFIT(B)
for k = 1 to m do

`k = 0
. `k will denote the current load (i.e., total time) on machine k

while  n do
i = argmink{`k + pj/sk}
if `i + pj/si  2B then

`i := `i + pj/si

else Report failure and terminate

Makespan for restricted machines
Input: {[(p1, S1), (p2, S2), . . . , (pn, Sn)] : m}; m machines; pj is the processing time for a job Jj

when executed on a machine Mi 2 Sj .
Output: � : {1, 2, . . . , n} ! {1, 2, . . . m} where �(j) = i 2 Sj denotes that the jth job has been
assigned to an allowed machine i 2 Sj .
Objective: To find � so as to minimize maxi

P
i:�(j)=i2Sj

pj .
We have very precise results for the makespan problem in the restricted machines model.

Theorem 4.7.3. The deterministic competitive ratio for the restricted machines model For deter-
ministic algorithms, the competitive ratio ⇢ is

dlog(m + 1)e  ⇢  dlog me+ 1

For randomized algorithms, the competitive ratio ⇢ is

dln(m + 1)e  ⇢  dln me+ 1

4.7.3 Unrelated Machines

The most general machine model studied in the makespan problem is the unrelated machine model.
Here each input item is a job Jj described by a vector ~p = hp1,j , p2,j , . . . pm,ji where pi,j is the load
or time for job Jj when scheduled on machine i.

Makespan for unrelated machines
Input: {(~p1, ~p2, . . . , ~pn) : m}; m machines; ~pj = hp1,j , . . . , pm,ji where pi,j is the processing time
for job Jj when executed on a machine Mi.
Output: � : {1, 2, . . . , n} ! {1, 2, . . . m} where �(j) = i denotes that the jth job has been
assigned to machine Mi.
Objective: To find � so as to minimize maxi

P
i:�(j)=i2Sj

pj .

It is easy to see how the unrelated machines model generalizes all the previous models. For
example, in the restricted machine model, each pi,j 2 {pj ,1}.

Another extension of the identical machines makespan problem is the load balancing problem
for virtual circuit routing1. In the load balancing routing problem, we are given a graph G and n
source-terminal “calls” {(si, ti)} where each call has a bandwidth or load pi and we have to route
each call along some path in G. The objective is to minimize the maximum load on any edge of the

1The terminology here comes from call routing in a classical telephone switching system.

38 / 38

	Week 3

