
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

September 18, 2019

1 / 38

Week 2

Todays agenda:

Update some comments from last week regarding bin packing.

Discuss two related online maximization problems, time series search
and one-way trading.

Introduce randomization for online algorithms
1 Type of adversaries and their relation.
2 A contrived extreme example of how much randomization can help:

the bit guessing game
3 A more natural extreme example of how much randomization can help:

the proportional profit knasack problem
4 Brief discussion of the why and how of de-randomization

The Yao minimax principle

Paging: the deterministic vs the randomized competitive ratio

2 / 38

What is now known about online bin packing

The (asymptotic) competitive ratio for FirstFit and BestFit is 1.7.
The initial result by Garey, Graham and Ullman [1972] showed that if
ALG is FirstFit or BestFit then for every ε > 0, ALG ≤ (1.7 + ε)OPT
for OPT ≥ 51

10ε + 3. They also pointed out that for many values of
OPT , it was actually the case that FirstFIt and BestFit satsfiy
ALG ≤ (1.7)OPT . The proof in our text is their result.
After a series of results showing FF ≤ (1.7)OPT + c for better
additibe constants c , Dósa and Sgall in 2013 (resp. 2014) showed
that 1.7 was a strict competitive ratio for FirstFit (resp., BestFit).
In 1980 Yao provided an online algorithm with competitive ratio 5

3
and gave the first negative result in competitive analysis showing that
no deterministic online algorithm has competitive ratio better than 3

2 .
Currently the best know upper (resp. lower bound) for the bin
packing competitive ratio are 1.57829 (resp 1.5014) due to Balogh et
al [2018] (resp. Balogh, Békési and Galambos [2012]. And just this
year, Dosa et al [2019] showed that 5

3 is the best strict competitive
ratio for bin packing.

3 / 38

The time-series search problem

We now consider our first maximization problem, the time-series search
problem. Think of selling a US house when moving from the US to
Canada. Every day there is a different exchange rate. Suppose we have n
days to convert the US funds obtained from the sale. Suppose the
exchange rates are p1, . . . , pn. That is, one $ US = pi$ Canadian on day i .
We would like to sell on a day i so as to maximize the value pi . Suppose
we also know that L ≤ pi ≤ U. (Note: such bounds might be dictated by
the government or might be assumed from historical data.

If φ = U
L then any algorithm for picking the day to convert will achieve

competitive ratio at most φ.

Reservation price policy (RPP) for converting given U and L

There is an online algorithm that achieves strict competitive ratio
√
φ.

Namely, let p∗ =
√
UL. Then convert on the first day j (if any) such that

pj ≥ p∗. If there is no such day, then convert on the last day. Furthermore√
φ is a tight bound given U and L whereas if only φ is given, then φ is a

tight bound.
4 / 38

The One-Way trading algorithm

The following problem generalizes the time series problem. We again have
exchange rates p1, . . . , pn and want to convert US $ to Canadian $. But
now we have the option to trade gradually. That is, on every day, we can
choose a fraction fi of the funds at that days exchange rate. The objective
is to maximize

∑
j fjpj subject to

∑
j fj = 1. The time series problem

forces fj ∈ {0, 1}.
There is an algorithm that perhaps suprisingly obtains a competitive ratio
c(φ) log φ where c(φ)→ 1 as φ→ 1. The ratio log φ is asymptotically
tight).

Assume U/L = 2k for some k .

More precise results can be found in the El-Yaniv, et al Algorithmica 2001
paper. In particular, they show that with knowledge of φ alone, one can
also get a competitive ratio “arbitrarily close” to log φ.

5 / 38

The competitive algorithm for the one-way trading
problem

30 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

Algorithm 6 The Mixture of RPPs

procedure reservation price
. U, L, and � = U/L = 2k are known in advance
i⇤ �1
for j 1 to n do

i max{i | L2i  pj}
if i = k then

i k � 1

if i > i⇤ then
Trade fraction (i� i⇤)/k of savings on day j
i⇤ i

Trade all remaining savings on day n

value of the objective function:

pX

j=1

i⇤j � i⇤j�1

k
L2i⇤j +

k � i`
k

L,

where the first term is the lower bound on the contribution of trades until day ` and the second
term is the contribution of trading the remaining savings on the last day.

In order to bound the first term, we note that if we wish to minimize E =
Pp

j=1(i
⇤
j � i⇤j�1)2

i⇤j

over all increasing sequences i⇤j with i⇤0 = �1 and i⇤p = i` then we have i⇤j = j � 1. That is the
unique minimizer of the sum E is the sequence �1, 0, 1, 2, . . . , i`, i.e., it doesn’t skip any values. In
this case we have

Pp
j=1(i

⇤
j� i⇤j�1)2

i⇤j =
Pi`

j=0 2j = 2i`+1�1. Why is this a minimizer? We will show
that an increasing sequence that skips over a particular value v cannot be a minimizer. Suppose
that you have a sequence such that i⇤j�1 < v < i⇤j and consider the jth term in E corresponding

to this sequence. It is (i⇤j � i⇤j�1)2
i⇤j = (i⇤j � v + v � i⇤j�1)2

i⇤j = (i⇤j � v)2i⇤j + (v � i⇤j�1)2
i⇤j >

(i⇤j � v)2i⇤j + (v � i⇤j�1)2
v; that is, if we change our sequence to include v we strictly decrease the

value of (E). Thus, the unique minimizing sequence is the one that doesn’t skip any values.
From the above discussion we conclude that we can lower bound ALG as follows:

ALG � 2i`+1 � 1

k
L +

k � i`
k

L.

Finally, we can bound the competitive ratio:

OPT

ALG
=

L2i`+1

(2i`+1 � 1)L/k + (k � i`)L/k
= k

2i`+1

2i`+1 + k � i` � 1
.

The worst-case competitive ratio is obtained by maximizing the above expression. We can do so
analytically (taking derivatives, equating to zero, etc.), which gives i` = k � 1 + 1/ ln(2). Thus,
the competitive ratio is log � = k times a factor that is slightly larger than 1 and approaching 1 as
k !1.

We saw that with time-series search knowing U or L was crucial and knowing just � was not
enough. In contrast, it turns out that for one-way trading one can prove a similar positive result
to the above assuming that the algorithm only knows � and doesn’t know U or L. Exercise 8 is
dedicated to this generalization. Another generalization is that we don’t need to assume that �
is a power of 2. Proving this is tedious and has low pedagogical value, thus we just claim it here
without a proof.

6 / 38

Comments on time-series and one-way trading

We will later discuss the secretary problem. This problem introduced
the random order input model (ROM) where an adversary creates a
nemesis set S of input items. The sequence of inputs is a random
permutation of the items in S .

In the secretary problem, the input is a sequence of items (e.g.,
secretaries or candidates for any position) where each input item is
described by a value vj . The secretary problem assumes the ROM
model and the goal is to maximize the probability of choosing the
best item. When the items can have arbitrary values, this is
equivalent to maximizng the expected value of the solution. In terms
of the objective and as online problems, the secretary problem and
time series search are the same problem.

Why did we refer to the one-way trading algorithm as mixture of
RPPs? It turns out that the Mixture of RPPs is the de-randomization
of an even simpler randomized algorithm.

7 / 38

Competitive ratio of maximization problems

In the two maximization examples just presented, we expressed the
competitive ratio ρ so that ρ ≥ 1. This is consistent with the following
definition of the competitive ratio for a maximization problem:

ρ(ALG) = liminfOPT (I)→∞
OPT (I)
ALG(I)

Note that the ratio here is inverted from the ratio in the definition for
minimization problems as we know that OPT has to be at least as good
as ALG maximization. We could instead maintain the following definition
as in the minimization problems, namely:

ρ(ALG) = liminfOPT (I)→∞
ALG(I)
OPT (I)

Using this defintion, competitive ratios will always satisfy ρ ≤ 1.
There is no clear convention but I will try to use ρ ≥ 1 when the ρ is is a
function of the input I and use ρ ≤ 1 when ρ is an absolute constant.

8 / 38

What have we been doing and where are we going?

We have basically covered Chapters 1 and 2 except for the line search
problem and paging. Paging is an important topic and will be discussed
later in this lectture and in aa more unified manner in subsequent lectures.
Next is Chapter 3 where we begin a discussion of randomized online
algorithms. The power of randomization is one of the most fundamental
questions in complexity theory. The central open question in this regard is
whether or not P = BPP where BPP is a randomized version of P that
allows for 2-sided errors.

Even if it turns out that say P = BPP, which some prominent complexity
theorists conjecture, it is still possible that randomization provides better
complexity bounds and/or may allow conceptually simpler algorithms for
various problems.
For online algorithms, our goal is to see the extent to which randomization
can improve bounds the competitiveness that can be achieved for various
problems or when it may permit a conceptually simpler algorithm. For
online algorithms, the randomneess is used in making a decision for each
online input item. 9 / 38

Randomized algorithms

We think of randomized algorithms having the ability to access a
distribution and instantiate a random variable whenever we want to make
a randomized decision.

It is sufficient to just have access to random bits since we can approximate
all the common distributions to any degree of accuracy using a fixed
number of random bits. For example, we might want to say “choose a
random real number in [0, 1]”. This should be apparent as to how to do
this.

We will therefore consider randomized algorithms (either online or offline)
as having access to an infinite tape of random bits. For algorithms
terminiating in some bounded number of steps, we will only use a bounded
initial substring of the bits from the infinite tape.

10 / 38

Although we traditionally think of using randomness as we go along, we
can alternatively view randomized algorithms (either online or offline) as a
mixture of deterministic algorithms. Once we fix the random bits, we have
a deterministic algorithm. So for a fixed n, we will have a finite number of
deterministic algorithms each deriving from an initial instantiation of the
bits.

Suppose there are at most 2t computation paths (one for each setting of
say t bits). A specific computation path will use some t ′ ≤ t of these bits.
We can think of this being filled out by all the to 2t−t

′
choices of bits

meaning that this path is chosen with higher probability.

For the purpose of proving negative (i.e., inapproximation) results, the
view of randomized algorithms as a mixture allows us to use the Yao
pinciple (to be discussed).

11 / 38

Types of adversaries

While for deterministic online algorithms, there is only one type of
adversary, when discussing randomized online algorithms, there are three
types of adversaries.

An oblivious adversary. This is the commonly assumed adversary and
the one we assume. The adversary is oblivious in the sense that it
does not see the random bits and decisions of the algorithm (and
hence gives the algorithm a “fighting chance” at improved
performace. That is, the adversary just provides a sequence
{x1, . . . , xn} of inputs. The performance of the algorithm is now a
random variable depending on the randomness used in the algorithms
decisions.

The competitive ratio (for a minimization algorithm ALG) in this
setting is defined as :

ρ(ALG) = lim supOPT (x1,...xn)→∞
ED1,...,Dn (ALG (x1, . . . , xn,D1, . . . ,Dn))

OPT (x1, . . . , xn)
.

Note that the denominator is not a random variable. Why?
12 / 38

Adaptive adversaries

There are two types of adaptive adversaries.

Adaptive offline adversary. This is the strongest adversary and hence
makes it the hardest for the algorithm to exploit randomness. In this
setting, after the algorithm creates each xi , it sees the decision of the
algorithm before creating xi+1. Then after the entire sequence
x1, . . . , xn is created, the adversary can then determine an optimal
solution for this input.

The competitive ratio (for a minimization algorithm ALG in this
setting is defined as :

ρ(ALG) = lim supOPT (x1,...xn)→∞
ED1,...,Dn (ALG (x1, . . . , xn,D1, . . . ,Dn))

E(OPT (x1, . . . , xn))
.

Note that the denominator is now a random variable. Why?

13 / 38

Adaptive adversaries continued

Adaptive online adversary. This adversary is an intermediate type of
adversary. It has the benefit of observing the decisions of the
algorithm but must also make decisions online. (If we have time, I
plan to discuss stochastic probing algorithms where the ide of the
adversary having to behave online is also used as a more reasonable
benchmark for defining a competitive type of performance ratio.

The competitive ratio (for a minimization algorithm ALG in this
setting is defined as :

ρ(ALG) = lim supOPT (x1,...xn)→∞
ED1,...,Dn (ALG (x1, . . . , xn,D1, . . . ,Dn))

E(OPT (x1, d1, . . . , xn, dn))
.

where d1, . . . , dn is the sequence of decisions made by the online
adverssary.
Note that the denominator is again a random variable.

14 / 38

The relationship between the adversaries

The following figure summarizes the ratlative power of these adversaries:

40 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

⇢OBL(ALG) ⇢ADON(ALG) ⇢ADOFF (ALG) (⇢ADON(ALG))2

⇢(ALG0) deterministic

 

gap can be arbitrarily large

=

better competitive ratio worse competitive ratio

Figure 3.1: This figure summarizes the relationships between competitive ratios with respect to
di↵erent types of adversaries.

3.4 How Much Can Randomness Help?

We start by showing that the gap between the competitive ratio achieved by a randomized algorithm
and a deterministic algorithm can be arbitrary large. We begin by fixing a particular gap function
g : N! R. Consider the following maximization problem:

Modified Bit Guessing Problem
Input: (x1, x2, . . . , xn) where xi 2 {0, 1}.
Output: z = (z1, z2, . . . , zn) where zi 2 {0, 1}
Objective: To find z such that zi = xi+1 for some i 2 [n � 1]. If such i exists the payo↵ is
g(n)/(1� 1/2n�1), otherwise the payo↵ is 1.

In this problem, the adversary presents input bits one by one and the goal is to guess the bit
arriving in the next time step based on the past history. If the algorithm manages to guess at least
one bit correctly, it receives a large payo↵ of g(n)/(1� 1/2n�1), otherwise it receives a small payo↵
of 1.

Theorem 3.4.1. Every deterministic algorithm ALG achieves objective value 1 on the Modified
Bit Guessing Problem.

There is a randomized algorithm that achieves expected objective value g(n) against an oblivious
adversary on inputs of length n for the Modified Bit Guessing Problem.

Proof. For the first part of the theorem consider a deterministic algorithm ALG. The adversarial
strategy is as follows. Present x1 = 0 as the first input item. The algorithm replies with z1. The
adversary defines x2 = ¬z1. This continues for n � 2 more steps. In other words, the adversary
defines xi = ¬xi�1 for i = {2, . . . , n} making sure that the algorithm does not guess any of the bits.
Thus, the algorithm achieves objective function value 1.

Consider the randomized algorithm that selects zi uniformly at random. The probability that
it picks z1, . . . , zn�1 to be di↵erent from x2, . . . , xn in each coordinate is exactly 1/2n�1. Therefore
with probability 1 � 1/2n�1 it guesses at least one bit correctly. Therefore the expected value of
the objective function is at least g(n)/(1� 1/2n�1) · (1� 1/2n�1) = g(n).

Corollary 3.4.2. The gap between ⇢OBL and ⇢ADOFF can be arbitrarily large.

Thus, there are problems for which randomness helps a lot. What about another extreme? Are
there problems where randomness does not help at all? It turns out “yes” and, in fact, we have
already seen such a problem, namely, the One-Way Trading problem.

15 / 38

The proportional knapsack problem: A natural
example where randomness is very helpful

In the knapsack problem, we are given a set of items {si , vi} and a
knapsack size bound B. The goal is to select a set S of items (or indices
of items) that fit into the knapsack (i.e.,

∑
i∈S si ≤ B. (Without loss of

generality (as in bin packing) we can assume si ≤ 1 = B for all i .)

It is not hard to show that no online (or even greedy algorithm) can have a
constant approximation for the knapsack problem (although there is an
FPTAS for this problem).

A special case of the knapsack problem is what we have called the
proportional knapsack problem. It is also called the subset sum
(optimization) problem. In this problem, we let wi = si = vi for all i and
then the problem is more simply to see what is the most size we can fit
into the knapsack.

As we show, there is no deterministic constant competitive algorithm for
the proportional knapsack problem.

16 / 38

The 1 random bit proportional knapsack algorithm

The following simple 1 random bit algorithm is competitive.

42 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

Theorem 3.4.4. Let ✏ > 0 be arbitrary and let ALG be a deterministic online algorithm for the
Proportional Knapsack problem. Then we have

⇢(ALG) � 1� ✏

✏
.

Proof. Let n 2 N. We describe an adversarial strategy for constructing inputs of size n. First, let
W = n. Then the adversary presents inputs ✏n until the first time ALG packs such an input. If
ALG never packs an input item of weight ✏n, then ALG packs total weight 0, while OPT � ✏n,
which leads to an infinitely large competitive ratio.

Suppose that ALG does not pack any of the first n� 1 items, then the adversary declares that
the nth item has value 0 which again results in an infinitely large competitive ratio. Otherwise,
suppose that ALG packs wi = ✏n for the first time for some i < n. Then the adversary declares
wi+1 = n(1� ✏) + ✏ and wj = 0 for j > i + 1. Therefore ALG cannot pack wi+1 since wi + wi+1 =
n + ✏ > W . Moreover, packing any of wj for j > i + 1 doesn’t a↵ect the value of the objective
function. Thus, we have ALG = ✏n, whereas OPT = wi+1 = n(1� ✏) + ✏. We get the competitive

ratio of n(1�✏)+✏
✏n � n(1�✏)

✏n = 1�✏
✏ .

Next we show that a randomized algorithm, which we call SimpleRandom, that uses only 1 bit
of randomness achieves competitive ratio 4. Such 1 bit randomized algorithms have been termed
“barely random”. Algorithm 7 provides a pseudocode for this randomized algorithm. The algorithm
has two modes of operation. In the first mode, the algorithm packs items greedily — when a new
item arrives, the algorithm checks if there is still room for it in the bin and if so packs it. In
the second mode, the algorithm waits for an item of weight � W/2. If there is such an item, the
algorithm packs it. The algorithm ignores all other weights in the second mode. The algorithm
then requires a single random bit B, which determines which mode the algorithm is going to use
in the current run.

Algorithm 7 Simple randomized algorithm for Proportional Knapsack

procedure SimpleRandom
Let B 2 {0, 1} be a uniformly random bit . W is the knapsack weight capacity
if B = 0 then

Pack items w1, . . . , wn greedily, that is if wi still fits in the remaining weight knapsack
capacity, pack it; otherwise, ignore it.

else
Pack the first item of weight �W/2 if there is such an item. Ignore the rest of the items.

Theorem 3.4.5.
⇢OBL(SimpleRandom)  4.

Proof. The goal is to show that OPT  4 · E(SimpleRandom) on any input sequence w1, . . . , wn.
We distinguish two cases.

Case 1: for all i 2 [n] we have wi < W/2. Subcase 1(a):
Pn

i=1 wi  W . In this subcase,
SimpleRandom running in the first mode packs all of the items. This happens with probability
1/2, thus we have E(SimpleRandom) � 1/2

P
i wi and OPT =

P
i wi. Therefore, it follows that

OPT  2 ·E(SimpleRandom) in this subcase. Subcase 1(b):
P

i wi > W . Consider SimpleRandom
running in the first mode again. There is an item that SimpleRandom does not pack in this case.
Let wi be the first item that is not packed. The reason wi is not packed is that the remaining
free space is less than wi, but we also know that wi < W/2. This means that SimpleRandom

ρOBL(SimpleRandom) ≤ 4OPT

Aside: For any function g(n), We give a rather artificial example where
any deterministic algorithm obtain profit = 1, while there exists a
randomized algorithm that achieves profit ≈ g(n).

17 / 38

A natural example where randomness does not help

Theorem 3.4.3 shows that any randomized algorithm ALG for one-way
trading can be “de-randomized” while maintaing the same competitive
ratio. In that proof we are viewing the randomized algorithm as having
access to an arbitrary (perhaps even continuous) distribution and then
being a mixture of deterministic algorithms where each of these
deterministic algorithms comes from fixing some random r drawn from the
distribution.

Since we are allowing continuous distributions we need to consider
integrals. But if we are just viewing randomness as choosing a string of t
bits, then the integrals can be replaced by summations over each of the
possible 2t random stings.

The proof shows how the mixture can be removed. Namely, suppose the
random one-way algorithms ALG trades a fraction fi of the remaining
dollars on day i . That is, when r is fixed, the algorithm trades a fraction
fi (r , p1, . . . , pi−1) on day i . Then we can create a deterministic one-way
algorithm by ”driving the mixture” into the fraction.

That is, the deterministic algorithm trades a fraction f̃i (p1, . . . , pi−1) on
day i

18 / 38

Randomization and de-randomizatiion for the
time-series problem

Recall that an algorithm for time-series is a special case of a one-way
trading algorithm. Consider the following randomized algorithm for the
time-series problem when given U and L, upper and lower bounds on the
conversion rates {pi}.
Assume for simplicity that L = 1 and U = 2k for some k > 0. Partition
the possible rates into k classes C0,C1, . . . ,Ck−1 where
Cj = {p|2j < p ≤ 2j+1}. Randomly choose a j ∈ {0, 1, . . . k − 1} and then
convert on the first day i such that pi ∈ Cj and trade on last day
otherwise (i.e., every day pi = 1).

This is clearly a mixture of deterministic algorithms which by Theorem
3.4.3 can be de-randomized. It is easy to see that this achieves (in
expectation) competitive ratio log φ where φ = U/L. Recall in contrast
that no detreministic algorithm can do better than

√
(φ).

Claim: The de-randomization of the above algorithm is the mixture of
RPPs algorithm given for the one-way trading algorithm. 19 / 38

De-randomization

Theorem 3.4.3 shows how to de-randomize any algorithm for the one-way
trading problem. We also now know that for some problems (e.g., the
proportional knapsack and time series problems), randomization is
essential to obtain a good competitive ratio. That is, no deterministic
online algorithm can come close to the performance of a specific
randomized algorithm. This, of course, implies there is no possible way to
de-randomize some algorithms so as to maintain (or come close to) the
randomized competitive ratio.

Later in the text we will consider other de-randomizations, some of which
will preserve the online framework while other de-randomizations will
necessarily require that the de-randomized algorithm is no longer an online
algorithm (e.g. the de-randomized algorithm is a “two-pass online”
algorithm or an “online paralell stream”).

NOTE: It is hard to define what de-randomization means. That is, when
transforming randomized algorithm ALG into a deterministic algorithm
ALG ’ , what is an allowable transformation?

20 / 38

Paging and the k-server problem

Paging (or caching) is, of course, one of the most studied problems, both
in theory and in “practice”. From the theoretical point of view, paging is
the starting point for many generalizations and alternative measures
(beyond the competitive ratio) of performance.

Arguably the most important generalization is the k-server problem which
is defined a follows:

Let M = (M, d) be a metric space with at least k + 1 points. That is,
d(x , y) is a metric distance function satisfying:

symmetry: d(r , s) = d(s, r) for all r , s
triangle inequality: d(x , z) ≤ d(x , y) + d(y , z) and
d(x , y) = 0 iff x = y .

In the k-server problem, a request sequence r1, . . . , rn is a sequence of
points ri ∈ M that must be served by one of k servers. If a request ri is
not occupied by a server, then an algorithm must move one of the k
servers (say located at some location r ∈ M) at a cost of d(r , ri). The
goal is to minimize the total cost of serving all requests.

21 / 38

Paging as a special case of the k-server problem

Paging is the special case of the uniform metric (i.e., d(r , s) = 1 for all
r 6= s) when we have k cache locations and M consists of the main
memory. Assume the cache is full. A request for a page in M not in the
cashe is a page fault and we have to move that page into the cache and
evict one of the pages in the cache. Each page fault has cost 1. (In one of
the many variations of this basic paging model, there can be different
costs associated with different external memory locations.)

In the k-server problem, we can assume without loss of generality that we
never move a server except to serve a request and at all times the servers
are located in different locations.

For paging, we can assume that we never evict a page unless there is a
page fault. This is called demand paging.

22 / 38

Many possible paging algorithms

The following are some possible online paging algorithms: When a page
fault occurs

LRU (least recently used): evict the page whose most recent request
was earliest.

FIFO (first in first out): evict the page that has been in the cache for
the longest time.

LIFO (last in, first out): evict the page that has most recently been
put in the cache.

LFU: (least frequently used): evict the page that has been request the
least since entering the cache

FWF (flush when full): whenever the cache is full and a page fault
occurs, flush out the entire cache and place the new request in the
cache.

23 / 38

The good and the bad regading competitive analysis

A good measure of performance should help predict real behavior and also
should be able to alllow us to gain insight as to which algorithm might be
prefered.

We shall show that for every k-server problem (i.e. every metric space), no
deterministic algorithm can be better than k-competitive. This then
implies that no deterministic online paging algorithm can be better than
k-competitive.

Experimental studies suggest that LRU (or some variant of it) is the best
paging algorithm to use.

The good and bad news is that LRU, FIFO and FWF are all k-competitive
while LIFO and LFU are not k-competitive. So while the competitve
theory at least distinguishes LRU from LIFO and LFU, it does not
distinguish itself from FIFO and FWF. Clearly FWF seems like a poor idea
and in practice it is really a terrible idea. (See the figure on the next slide.)

24 / 38

Experimental results for competitiveness vs cache
size

ON-LINE CACHING AS CACHE SIZE VARIES

Competitiveness

8--

6--

/

4“- ,.,//

~:~~
2‘~a~k~

lru

opt

o 100 2i&---- 300 400 Cache500

245

Size

Figure 1: Typical Competitiveness vs. Cache Size

notation),
● pk denotes the number of k-phases other than

the first in the sequence. That is, we break our
sequence into k-phases as described above, and P~
ia the number of such phases, minus 1.

. %k denotes the average number of new pages per
k-phase other than the first. That is, we sum the
number of new pages in the phase over all k-phases
with new pages, and divide by l’k.

● Xk, for any paging strategy X, denotes the (ex-
pected) number of faults made by X with a cache
of size k on the sequence. Thus xk /X1 is i%n upper
bound on the fault rate of X with a CaChe of size
k (in fact it is exactly the fault rate for a sequence
with no immediately repeated requests).
The next lemma is the key to the argument. The

lemma states that if the average number of new pages
per phase is small for a given cache size, then increasing
the cache size by a small amount decreases the number
of phases substantially.

LEMMA 3.1. Fiz a sequence. For any cache size k,

Pk+ L2?ii,] < ;Pk .

Proof. Let ao,..., apk denote the k-phase parti-
tioning of the sequence. “-

At least half (and thus at least [Pk/21) of the Pk
k-phases al, ap~ have a number of new pages not

exceeding 277ik (and thus not exceeding 12fik~). Denote
these by ail, . . . ,ai[P~,,l.

If we modify the k-phase partitioning by joining
every other such phase with the phase immediately
preceding, i.e. we join aij - 1 and aij for odd j, we obtain
a coarser partitioning of the sequence into at most
pk – (Pk/4] pieces. In the coarser partitioning, pieces
resulting from a join reference at most k+ lfik] distinct
pages, while the other pieces continue to reference at
most k distinct pages.

If we now consider the k+ [277i~j -phase partitioning,
we find that each k + 12fikj -phase contains the final
request of at least one of the pieces in the coarser
partition. This is because if a k + L2=k] -phase begins
at or after the beginning of a subsequence of requests
to at most k + 12Hik] distinct pages, it will continue at
least through the end of the subsequence.

Thus pkf Lzmk] s ~pk . •1

It is worth noting that we have a construction for
sequences for which * > $ for all k, and for which
the number of new pages per k-phase is no more than
3a(k). The construction holds for any integer valued a
such that a(k + a(k)) s 2~(k) and 1 S a(k) S k.

pages inductively
Having established this lemma, the rest of the

argument is straightforward. First, we argue that if, for

Figure: Figure from Young, SODA 1991

25 / 38

Some comments about paging

Some algorithms suffer Belady’s anomaly, namely, that there are request
sequences on which the algorithm will perform better (i.e., have less page
faults) when there are h < k cache pages.

LRU does not suffer Belady’s anomaly but FIFO does.

The main criticism of competitive analysis (especially with regard to
paging) is that adversarially generated request sequences are not found in
practice. For paging, we know that page requests will tend to satisfy
locality of reference; that is, the next page request will be “related” to
immediately preceding page requests. This is a reasonable explanation for
why LRU performs well in practice. This has led to a study of Markov
paging.

LFD (longest forward distance; i.e, evict the page whose next request is
latest) is an optimal offline algorithm that can be computed using
dynamic programming.

26 / 38

Marking and conservative algorithms are all
k-competitive

Consider cache size k and let σ = r1, r2 . . . be any request sequence. We
can partition σ into phases as follows: phase 0 is the empty phase, phase i
is the maximal request sequence following phase i − 1 containing at most
k distinct page requests.

Note that this k-phase partition is well-defined function of the request
sequence and does not depend on any algorithm for paging.

Consider a k-phase partion for a sequence σ. We will mark pages as
follows: At beginning of each phase, unmark all the pages in the cache.
Then during a phase we mark a page when it is first requested during this
phase. A marking algoriithm never evicts a marked page. In particular, the
k + 1st distinct page request r starts a new phase with r marked.

27 / 38

Every marking algorithm is k competitive

Consider a request sequence σ and it k-phase partition.

During a phase, a marking algorithm cannot fault twice on the same page
and hence during a phase, any marking algorithm will fault at most k
times.

On the other hand, counting the first request of a new phase, any
algorithm, including OPT will fail at least once per phase.

LRU and FWF are marking algorithms and hence are k competitive.

FIFO is not a marking algorithm but it is conservative in the sense that on
any consecutive subsequence of requests containing k or fewer distinct
pages, the algorithm will incur k of fewer page faults. A similar proof
shows that all conservative algorithms (and hence FIFO) are k competitive.

28 / 38

No online deterministic paging algorithm can be
better than k competitive

Choose any set of k + 1 pages {p1, . . . , pk+1}.
Initialize the cache arbitarily with k pages say the cache contains
p1, . . . , pk . Let the first request be the missing in cache page pk+1.
For every i , the next request ri+1 is the unique page not in cache.
(Recall that we are assuming that we never evict a page unless there
is a page fault so that this is a well defined request sequence.) Such
an adversary is called a cruel adversary.

29 / 38

Two relatively easy extension

We mention two relatively easy extensions for adversarial deterministic
online paging.

1 We have been charging 0 for a cache access and 1 for cache miss.
This is an infinite ratio of fast to slow memory. Of course, the ratio
between fast and slow is always finite. If a cache access costs 1 and a
cache miss costs s ≥ 1, the any marking algorithm has competitive
ratio k(s+1)

k+s and this is a tight bound.

2 One way to give the algorithm more of a “fighting chance” against a
worst case adversary is to assume that the algorithm is allowed more
cache pages than the adversary/OPT. Specifically suppose the
algorithm has k pages and OPT has h ≤ k pages. The tight
competitive ratio is then k

k−h+1

30 / 38

How much can randomization help in paging?

It turns out that like the time-series problem, randomization can provide
an exponential improvement in the competitive ratio. Namely, there is a
randomized paging algorithm that achieves competitive ratio Hk where
Hk =

∑k
i=1

1
i . Note that ln k ≤ Hk ≤ ln k + 1.

The lower bound will utilize the Yao minimax principle, based on von
Neuman’s zero sum minimax theorem. Yao first applied this principle to
establish time lower bounds. It has subsequently been used to establish
lower bounds (for minimization problems) on the competitive ratio.

We will first informally state the minimax principle as it applies to the
expected cost of an online algorithm for a minimization problem. (The
principle applies much more braodly as we indicate in the text.) In
particular, there is an analogous statement for a maximization problem.
Then we will apply it to show that the competitive ratio for every
randomized paging algorithm (for a cache of size k) is at least Hk .

31 / 38

The Yao Minimix Principle

Yao Principle applied to a minimization problem

Let X n denote a distribution on sequences of n input items. The expected
cost (with respect to the randomization) of a randomized algorithm on a
worst case input sequence (i.e., given by an oblivious adversary) is at least
as big as the expected cost (with respect to the distribution X n) of the
best deterministic algorithm.

NOTE: Proving that the princple as a theorem requires a precise
statement. Instead we will see how it is proven within the paging example
when we exhibit an appropriate distribution X n on request sequences of
length n.

32 / 38

A lower bound on the cost and competitive ratio for
randomized paging

Let X n be a distribution on input sequences x1, . . . , xn defined as follows:
for each i , choose xi uniformly and independently at radnom from
{p1, . . . , pk+1}.
We first consider the expected cost (i.e. page faults) of an arbitrary
deterministic paging algorithm. Starting from any initial setting of the
cache, the probability of each page request being a page fault is 1

k+1 .
Hence the expected number of page faults for a random request sequence
of length n is n

k+1 .

We now have to calculate the expected cost of an optimal algorithm OPT
(say LFD) for a random sequence of length n.

33 / 38

The expected cost of OPT on a random requeet
sequence of length n

We consider the k-phase partition induced by the random input sequence.
Say the partition is B1B2 . . .B`(n). Note that the lengths of these blocks
and `(n) are also random variables. (I am ignoring a final incomplete

block.) They are not independent since we must have
∑`(n)

j=1 |Bj | = n. But
as n→∞, the |Bi | are acting almost as if they are independent identically
distributed.

Let Zi be the random variable equal to the number of requests before
seeing the i th new page. In the text we argue that E[Zi] = k+1

k−i+2 . and
hence if B is a block, E[|B|] =

∑
E[Zi] = (k + 1)Hk . Now we use an

intuitive but technical result that limn→∞ n
E[`(n)] = E|B| (i.e., formalizing

the meaning that the |Bi | are basically acting as i.i.d. random variables.

We conclude that E[|`(n)|] (i.e. the expected number of blocks) is
(k + 1)Hk and therefore the expected cost of OPT is (k + 1)Hk

34 / 38

Concluding the proof for the lower bound on the
competitive ratio for randomized paging

We have for any deterministic algorithm ALGr that
We have EX nALGr (X n) ≥ HkEXn [OPT (X n)]
(I am ignoring a lower order term.)

Here now comes where we will use the Yao Principle.
Since a randomized algorithm is a mixture over deterministic algorithms,
taking the expectation over each algorithm in the mixture, we have

ErEX n [ALGr (X n)] ≥ HkEXn [OPT (X n)]

We now interchange the order of the expectations on the left side of the
inequality, we have:

EX nEr [ALGr (X n)] ≥ HkEXn [OPT (X n)]

There must then be one instantiation of the random input sequence (say
xn) that satisfies this inequality proving the desired result that:

Er [ALGr (xn)] ≥ Hk [OPT (X n)]
35 / 38

A randomized algorithm achieving competitive ratio
2Hk

There are now two randomized algorithms that achieve the optimal
competitive ratio Hk , for simplicty we will present the first randomized
paging algorithm achieving ratio 2Hk .

The algorithm is appropriately called MARK as it is a marking algorithm
and indeed it was the first paging algorithm where marking algorithms
were explicitly discussed. As in all marking algorithms, when a page in the
cache is requested the page becomes marked. When a page fault occurs,
an unmarked page is uniformly chosen at random chosen to be evicted. If
there are no unmarked pages in the cache then all are unmarked and again
a random page is evicted. In either case, the newly access page is brought
into the cache and marked.

36 / 38

MARK is 2Hk competitive

We can assume MARK and OPT are in the same initial configuration with
the cache full. AS usual, we need an upper bound on the expected number
of page faults by MARK and a lower bound on the number of page faults
by OPT.

For a request sequence, let B1, . . . ,B` be the k-pahse partition for the
request sequence. Consider the pages in block Bi . We classify these pages
as new if they didn’t appear in the previous block Bi−1 or old if it is did
appear in Bi .

We now bound the number of faults by MARK. The worst case for MARK
is when new pages all occur before old pages. Every new page request in
block Bi results in a page fault. Let mi be the number of new pages in Bi

so that we have k −mi old pages in Bi . Consider the start of phase i just
before the page starting this phase is brought in. All k pages in Bi are
unmarked. The mi new pages will each cause a page fault.

37 / 38

Analysis of MARK continued

So we now want to bound the expected number of faults caused by first
requests to the old k −mi pages. Consider the first request of an old page.
It is still in the cache with probability k−mi

k and hence has probability mi
k

of causing a page fault. The j th old page is in the cache with probability
k−mi−(j−1)
k−(j−1) and thus causes a page fault with probability mi

k−j+1 .

Summing up the expected number of page faults in the i th phase is
mi +

∑k−mi
j=1 = mi + mi (Hk − Hmi ≤ miHk . The total number of page

faults by MARK is
∑

i miHk

It remains to lower biund the number of faultts by OPT. Counting the
page requests in both Bi−1 and BI , there must be at least k + mi distinct
page requests and hance at least mi page faults by OPT. Hence the total
number of page faults by OPT is at least 1

2(
∑

i mi) since we are grouping
OPT faults by pairs of phases.

38 / 38

	Week 2

