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Announcements

@ This is our last week. We start with Gregory discussing dynamic
algorithms.
@ Then | will discuss some additional stochastic input problems.

@ | will then discuss some other adversarial and stochastic problems
that can be viewed as an extension of the online model.
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Stochastic probing and stochastic rewards

A different type of stochastic optimization problem concerns stochastic
probing. In stochastic probing, input items come with a probability, and to
reveal the actual item, an algorithm must probe the item.

In some probing variants, once the item is probed, the algorithm is
committed to the item. In other variants, there may be some associated
number of probes that are allowed,

Lets consider the BMM problem in the stochastic-commit model and call
this the stochastic-rewards problem as it is sometimes referred to.

In the stochastic rewards with patience problem, when an online vertex u
arrives all adjacent edges e = (u, v) are labelled with a probability

Pe = P(u,v) Which denotes the probability that the edge exists.
Furthermore, u has a patience constraint t,.
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Stochastic rewards continued

In order to attempt to match u to some available offline v, an online
algorithm must probe the edges adjacent to u in some order. The patience
constraint bounds the number of times edges adjacent to u can be probed.

Once a probed edge actually exists, the online algorithm is commtted to
using that edge in the matching. The offline vertices may or may not be
weighted.

When the patience parameter t, = 1 for all online vertices, this is called
the stochastic rewards problem without patience or simply the stochastic
rewards problem..

What is the benchmark against which the online algorithm is competing?
One urealistic benchmark is that the adversary-offline algorithm get to see
the instance graph. Then consider an adversarial type graph with one
online node having paience 1 and n offline vertices such that each edge

has probability 1/n. Then the graph will have an edge in the instance
graph with probability 1 — [(1 — ]” ~ 1 — 1 which is then the expected
offline reward whereas the online algorithm only has expected reward 1/na,2



A better benchmark

One often uses an optimal LP fractional solution to some apprpriate
relaxation of the matching problem to obtain an upper bound on a
benchmark solution.

It seems like a good “natural” extension to the non-stochastc benchmark
(i.e. an optimal solution) is the following: The adversary sets the
probabilities of the edges and the benchmark can reveal edges in any
order. In particular, it can look at the online nodes in any order. The only
offline constraints are that the benchmark is also limited by the patience
constraints of node and the commitment to any probed edge that exists.

The stochastic rewards without patience originated in Mehta and
Panigraphi [2012]. (Their LP benchmark that can be argued is too
powerful.)

| am following Brubach et al [2019] who consider the stochastic rewards
with patience problem with offline vertices weighted. They articulated the
“natural benchmark” above and use a more restricted LP to upper bound
such a benchmark. 5/22



The Brubach et al results

Brubach et al follow a 2019 paper by Goyal and Udwani [2019] which
claims to be using the same benchmark as in Brubach et al. However, it
appears that the benchmark is even more restricted in making the vertices
appear in the online order. That is a meaningful benchmark but | think the
Brubach et al benchmark is more natural in the sense that it specializes to
the usual offline OPT when all adjacent edges appear with probability 1.

First Brubach et al show that the “naive greedy” algorithm will not have
any constant competitive ratio. The naive greedy algorithm will probe
available edges in the order of non-increasing p, , w,.

To see this, consider having one online vertex u and n offline vertices with
weights p,, = w,, =1 and w,, =n—2and p,, = ﬁ fori=2,...n. The
naive greedy algorithm gets reward 1 while probing all edges (u, v;) for

i > 2 first obtains expected reward

(1-2L) "t - (n-2)+1~(1-1)-(n-1).
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The Brubach et online algorithm for stochastic
rewards with patience

We are considering an online algorithm and hence does not know future
online nodes. So we only need to consider any given online node u with
patience t, and edges (u, v1),...,(u, v,) with corresponding edge
probabilities p(u, v;). This is a star graph (also called a n-claw) with
center u and “talons ' {v;}. The intuition is that with large patience we
can take a chance on a low probability (u, v;) if the weight of v; is big.

The optimal probing sequence (for each online vertex) will be calculated
by dynamic programming (DP). It will essentially find an optimal subset
V' C V of size t, and then probe the nodes in V'’ in order of
non-increasing weights. Once an optimal subset V' is determined , it i
optimal to probe thsat sequence in the specified order.

As is standard in DP, one computes the optimal (expected ) value and
then there are various ways to extend the DP to compute a corresponing
solution.
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The DP for computing the optimal probing
sequence for an online node

Assume wy, > w,,,... > w,,

The main idea is to define an apprpriate array and here we can define

V/[i, t] the optimal expected value for probing the edges given patience t
and starting from v;.

The recursion for computing V/(i, t) is:
(1) V(i,t) = puy - wy, ift=1
(2) V(i, t) = Pu,v;Wy; + (1 - pu,v;) T Mmaxjs; V(j7 t— 1) for t >1

The desired entry is max; Vi, t]
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The adaptivity gap

Within TCS, stochastic probing was initiated in an article by Dean et al
[2008] who considered a stochastic knapsack problem. The setting here is
closer to that of priority (i.e, myopic) algorithms rather online algorithms.
The inputs are pairs (v;, s;) where the size s; is drawn from a distribution
F;.

The items are either read in a fixed order or an adaptive order, that is, an
ordering depending on the previous drawn items. The main thing | want to
mention here is that Dean et al define the adaptivity gap, the gap between
the expected values obtaioned by a fixed order algorithm vs an optimal
adaptive ordeer algoritihm. (The paper doesn't discuss the nature of what
is alllowed as an ordering but one could at least argue that the fixed order
should be a priority order as defined in fixed priority algorithms).
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The adaptivity gap for stochastic rewards

The Brubach et al paper adopt and study the concept of the adaptivity
gap with regard to the stochastic rewards with patience problem. Their
adaptivity gap compares an online algorithm using a fixed ordering of
edges for each online node vs their benchmark. That is, the ordering of
edges cannot depend on the previous history of revealed edges. Hence,
their fixed online algorithms will try to probe an edge even if it is adjacent
to an already matched offline vertex. This seems too restrictve to me.

Here the adaptivity gap is comparing a non adaptive online algorithm that
knows the stochastic type graph) to the benchmark, that is the adaptive
offline algorithm that also knows the type graph.

Finally, as far as | know, the only inapproximation bounds for stochastic
rewards is obtained by what we know for the i.i.d. setting.
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The Pandora’s box problem

Another interesting stochastic probing problem is the so-called Pandora's
box problem. There are variants but here is the original offline problem as
defined (and optimally solved) by Weitzman.

There are n boxes and each box i contains an independent (but not
necessarily identical) random value v; and a fixed cost ¢;.

In the original problem, an offline algorithm knows the distributions and
can choose the order of the boxes. The algorithm has the option to open
any box i at cost ¢;. At some point it stops and collects the maximum
value in any box that has been opened having paid all the costs for opened
boxes. The goal is to optimize the expected profit defined as

E[maxjes vi] — > ;cs where S is the set of opened boxes.

For the original problem, Weizman [1979] defined a reservation price v;* for
each box i. The algorithm then sorts the boxes so that vi/ > v5 ... > v,
and stops whenever the maximum value of opened boxes exceeds the
reservation price of any so far unopened box. This turns out to be an
optimal stopping rule. 11/22



The online Pandora’s box problem

In the online Pandora’s box problem, the algorithm is given the boxes in an
adversarial order. Like the prophet inequalities problem, it knows all the
distributions in advance. It can decide to open a box (at a cost) or not
open a box. At any time the algorithm can stop and receive the max value
opened and pay the costs for all opened boxes.

What is the benchmark? We cannot use a fully clairvoyant benchmark
that knows the best boxes to open (in terms of the expected net value
obtained). Such a benchmark will result in an unbounded competitive
ratio as observed by the following example: ¢; = 1 for all / and all the
distributions are identical such that v; = 0 with probabiiity 1/2 and v; = 2
with probability 1/2.

The expected value for opening any box is 1. Hence any oniine algorithm
will have expected profit at most 1. The benchmark will see a box having
v; = 2 with probability 1 — 2" and hence has expected profit that
approaches 2 as n — .
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A generalized online Pandora’s box problem

While the original Pandora’s box and prophet inequalities problems were
only seeking a single item, these problems have been extended to consider
selecting a set of items subject to some constraint (as we discussed for the
generalized secretary problems).

In a recent paper, Esfandiari et al [2019] show how to reduce this
generalized Pandora's box problem (for any constraint) to the problem of
finding a threshold based algorithm for the correspnding generalized
prophet inequalities problem (i.e. Pandora’s box where all box costs are 0).
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We will end the term with a listing of recent activity
in the field of online algorithms

The field of online algorithms remains an active field of research where :

@ Some existing problems have improved solutions often requiring
substantial new ideas.

@ Some existing problems are substantially generalized.

@ New problems are being introduced.
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Matching tasks to workers

Two interesting problems concern matching tasks (arriving online) to
experts/workers. In each of these setting, a task consists of a subset of
skills needed for completing the task.

Anagnostopoulos et al [2012] consider the following problem:

There are m skills and every task consist of some subset of required skills.
That is a task T is a vector in {0,1}™ where T; = 1 iff the i*" skill is
required for the task T.

There is a set P of experts who are in a social network G = (P, E, d)
where d is a metric distance function on the edge representing a measure
of closeness amongst pairs of experts. An expert posseses a subset of
skills. That is, an expert P is also a vector in {0,1}™ so that P; = 1 iff P
has the it skill.

Given an online sequence of tasks (T, T1,..., T"), each task T/ must be
assigned to a team Q/ of experts so that the task is “covered” by the
team. That is, for every skill / such that T,-J =1 there is an expert P € @/
such that P; = 1. 15/22



The objectives in assigning experts to tasks

There are two possibly conflicting objectives that we want the assignment
of tasks to experts to satisfy: namely, we want to mimnimize a desired
allocation cost (depending on the load assigned to each expert) while
covering all tasks and keeping the coordination cost (depending on the
social network distances) within some bound.

There are different ways to define allocation costs and coordination costs.
But the basic idea is that the experts need to communicate and work well
tegether in order to complete a task.

The paper provides competitive bunnds for different allocation and
coordination costs. The paper also provides some experiments showing the
tradeoffs between allocation and coordination (eg for diameter vs max
load).
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Another problem assigning workers to tasks

Anagnostopoulos et al [2018] (not quite the same set of authors) consider
another setting where now there are tw0 types of workers, those that are

hired and freelancers. As in the previous problem, online tasks consist of a
subset of required skills and workers possess a subset of skills. Each online
task must be covered by at least one worker, whether hired or a freelancer.

Hired workers have a salary (paid for each task) whether they are used or
not as well as a hiring cost (including possible termination) whereas a
freelancer is paid once for each task.

The objective is to minimize the total cost for covering each task.
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The k-taxi problem

The k taxi problem is a generalization of the k-server problem. In this
problem, a request is a pair of points (s, t) in a metric space which
represents a passenger who wants to be driven from s to t.

As in the k-server problem, a request must be served by one of the k
servers (i.e., taxis). In the easy version, the cost of serving a request is the
total cost of the serverv travelling first to s and then to t. This problem
can be reduced to the k-server problem.

In the hard version, the cost of serving a request is just the distance
travelled without a passenger. In the hard version, the current best

randomized competitive ratio for general n point metric spaces is
O(2% log n)where.

For specific metric spaces (e.g. the line), one can do better. Specifically,
there is a constant competitive ratio for the 3-taxi problem on the line.
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Online bipartite matching variants relating to online
advertising

As stated at the start of the course, one of the main reasons for the
continuing research interest in online algorithms is due to online advertsing
in search engines. This research has led to many variants of the basic
online bipartite matching problem.

In this regard, problems are studied in both the adversarial (worst case
instances) setting as well in stochastic settings. The settings that are
arguably most appropriate for online advertising is for edge weighted
bipartitie graphs which will preclude any constant competitive ratios for
worst case instances in many settings.
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Adwords and Display Ads

Two well studied online advertising models are the adwords problem and
the display ads problem. We can think of advertisers being the offline
nodes and online items being search terms, ads, etc.

@ Adwords: There is a bid (i.e., profit) bj; for matching item j with
advertiser i. When b;; = b; for all i, this is the vertex weighted
bipartite mathching problem. In adwords, the usual assumption is
that every advertisers has a budget B; and that each bid b;; << B;.

@ Display ads: Every advertiser has a capacity C; which is the a bound
on the number of items that an advertiser can be allocated. In the
case of “free dsposal”, an advertiser can be assaigned any number of
items but the profit is defined as sum of the C; highest items assigned.
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ADV ROM Unknown IID Known IID
Adwords 1—1/e (optimal) [8] 1—€[9] 1-e 1-e¢
(small bids)
Adwords 1/2 0.51 [1] 1-1/e 1-1/e
(large bids)
Display Ads with Free Disposal | 1 —1/e (optimal) [5] 1—€[7] 1—e 1—e
(large capacities)
Display Ads with Free Disposal 0.5018 [2] 0.51 [1] 1-1/e 0.705
(general capacities)
Display Ads 0 1/e (optimal) [6] 1/e 0.705 [4]
without Free Disposal
Submodular Welfare Maximiza- 1/2 (optimal) [3] 0.505 [1] 1—1/e (optimal) [3] 1-1/e

tion

Table in Mehta surver updated by Chris Karavasilis
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Bipartite stochastic matching as an extension of
prophet inequalities

Alaei, et al [2012] consider adwords and display ads in a setting where the
online algorithm knows the independent (but not necessarily) identical
distributions F; of the jt item.

They show the following:

@ For display ads without free disposal, if C; > k, then the competitive
ratio is at least 1 — —-

vV k+3
@ For adwords, if b < %, then the competitive ratio is at least
1
1 V2ork®

In both cases, the ratio approaches 1 as k gets large. The display ads
result generalizes the original % ratio for prophet inequalities.
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