
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

November 20, 2019

1 / 19

Announcements

There is no lecture on Wednesday, November 27 The final lecture will
take place December 4.

Today we will start with Carolyn discussing results in Chapter 6

I will finish the lecture by continuing with some topics in stochastic
online online algorithms.

We begin where we left off discussing bipartite matching in i.i.d. input
model and, in particular, the Feldman et al bipartite matching algorithm in
the i.i.d. input model.

2 / 19

Bipartite matching in the i.i.d. model

For the unweighted bipartite maximum matching (BMM) we observed that
Ranking can be viewed as a deterministic algorithm in the ROM model
that achieves expected competitive ratio 1− 1

e . It then follows immediately
that deterministic Fixed Rank algorithm achieves (at least) the same 1− 1

e
ratio in the unknown (and hence also known) i.i.d. model for the BMM
problem. It is currently unknown if there is a better deterministic
approximation for the BMM problem in the ROM model. However, there
are significantly better approximations for both the unweighted (and even
edge weighted) bipartite matching problems in the known i.i.d. model.

For the edge weighted case, the i.i.d. approximations are therefore much
better than what can be achieved in the ROM model since in the ROM
model we know that the ratio 1

e is asymptotical the best we can do.

For the unweighted (or offline vertex weighted) case the known results are
better than what is known for the ROM model so far, we do not know
what is the best possible ROM approximation nor do we know what is the
best i.i.d. approximation.

3 / 19

The known i.i.d. model for the BMM problem

In the known i.i.d. model, an adversary first chooses a type graph
G = (L,R,E) and a distribution p : L→ [0, 1] on the LHS nodes. In this
case, the nodes in L are also referred to as types. The type graph together
with the distribution is given to the algorithm in advance.

In the known i.i.d. model, an actual input instance Ĝ = (L̂,R, Ê) is a
random variable and is generated from G as follows. The right hand side
R is the same in G and Ĝ , but the left-hand-side of Ĝ consists of n i.i.d.
samples from p. Thus, say a given node ˆ̀∈ L̂ has type ` ∈ L, then the
neighbors of ˆ̀ in Ĝ are the same as the neighbors of ` in G . The graph Ĝ
is presented to the algorithm in the vertex arrival model (the order of
vertices is the same as the order in which they were generated).

Note that a particular type ` can be absent altogether or can be repeated
a number of times in Ĝ . We refer to Ĝ as the instance graph. Feldman et
refer to Ĝ as the realization graph.

4 / 19

Known i.i.d. distributions with integral types

A known i.i.d. problem is said to have integral types if the expected
number of times a particular type occurs is integral. We will denote the
number of times type ` occurs in an instance by the random variable Z`.
Then the condition of integral types is that E[Z`] = p(`) · n ∈ Z.

While the parameters |L|, |R|, and n can all be different, the most common
setting is n = |L|. This assumption together with integral types implies
that without loss of generality one can take p to be the uniform
distribution on L (by duplicating types as necessary). An additional
common assumption is that |L| = |R|. In that case we talk about a single
parameter n = |L| = |R| = m.

The first algorithm to beat the 1− 1/e barrier in the known i.i.d. model is
due to Feldman et al. [2009]. Their algorithm achieved a competitive ratio
of .73. We rushed the explanation of Feldman et al so we will repeat this
first i.i.d. result for the BMM problem.

5 / 19

The Feldman et al algorithm for BMM in the i.i.d.
model
The first algorithm to beat the 1− 1/e barrier in the known i.i.d. model is
due to Feldman et al. [2009]. The algorithm has a preprocessing stage
followed by the online stage. In the preprocessing stage, the algorithm
solves the following modification of the standard network flow problem for
biparite matching: add two new nodes s and t, add directed edges from s
to r for each r ∈ R, and add directed edges from ` to t for each ` ∈ L,
orient the rest of the edges in G from RHS to LHS (these edges will be
called the graph edges). Each outgoing edge from s, as well as each
incoming edge into t, has capacity 2. The rest of the edges have
capacities 1. We denote this flow network by G̃ .

The algorithm of Feldman et al. finds an integral optimal solution to this
network flow problem. The subgraph induced by the graph edges with
positive flow on them has maximum degree 2. The last step of the
preprocessing stage is to apply a so-called blue-red-decomposition to this
subgraph to obtain a blue semi-matching Mb and a red matching Mr as
will be described. 6 / 19

The Feldman et al algorithm for BMM in the i.i.d.
model continued
In the online stage, the algorithm receives online nodes in the i.i.d. fashion
and matches them as follows: if a node of type i arrives for the first time,
the algorithm tries to match it to Mb(i). If Mb(i) = ⊥ or Mb(i) has been
previously matched, the algorithm leaves the current node unmatched. If a
node of type i arrives for the second time, the algorithm tries to match it
to Mr (i). Otherwise, a node of type i is left unmatched.

Here is the blue-red decomposition:

Experimental Study of Online Bipartite Matching Algorithms 7

2.3.2 Algorithms for Known I.I.D. Se�ing. We start with a special subroutine. Consider a bipartite
graph of maximum degree 2, i.e., a set of paths and cycles. Such a graph can be decomposed into
two matchings, which we will call blue and red. Strictly speaking, the blue subgraph returned
by the subroutine is not always a matching; sometimes it is a matching plus some extra edges.
However, the blue subgraph always satis�es the property that there is at most one edge incident
on each LHS node, i.e., the blue subgraph is a “matching on the left.” For simplicity and slightly
abusing notation, we shall sometimes refer to both blue and red subgraphs as matchings. However,
for clarity, we can say that the blue edges form a “semi-matching”. When we actually run the
Feldman et al. algorithm on an i.i.d. instance, the blue edges become a matching as determined by
the assignment of the online node. We present a particular decomposition in Algorithm 3, which
we call B���R��D������������ and which is due to Feldman et al. [12]. This decomposition is
used in several algorithms that we consider later.

Algorithm 3 Blue red decomposition due to Feldman et al. [12]. Applies to bipartite graphs of
maximum degree 2.

procedure B���R��D������������(G = (L,R, E))
Color edges of the cycles alternating blue and red.
Color edges of the odd-length paths alternating blue and red, with more blue than red.
For the even-length paths that start and end with nodes in R, alternate blue and red.
For the even length paths that start and end with nodes in L, color the �rst two edges blue,

then alternate red, blue, red, blue, etc.
return (semi-matching formed by blue edges, matching formed by red edges).

F������E�A�. The �rst algorithm to ever beat the 1�1/e barrier of the online adversarial model
in the known i.i.d. model is due to Feldman et al. [12]. The algorithm has a preprocessing stage
and the online stage. In the preprocessing stage, the algorithm solves the following modi�cation
of the standard network �ow problem for biparite matching: add two new nodes s and t , add
directed edges each from s to r for each r 2 R, and add directed edges from ` to t for each ` 2 L,
orient the rest of the edges in G from RHS to LHS (these edges will be called the graph edges).
Each outgoing edge from s , as well as each incoming edge into t , has capacity 2. The rest of the
edges have capacities 1. We denote this �ow network by eG. The algorithm of Feldman et al. �nds
an integral optimal solution to this network �ow problem. The subgraph induced by the graph
edges with positive �ow on them has maximum degree 2. The last step of the preprocessing stage
is to apply B���R��D������������ to this subgraph to obtain a blue semi-matching Mb and a
red matching Mr . In the online stage, the algorithm receives online nodes in the i.i.d. fashion and
matches them as follows: if a node of type i arrives for the �rst time, the algorithm tries to match
it to Mb (i). If Mb (i) = ? or Mb (i) has been previously matched, the algorithm leaves the current
node unmatched. If a node of type i arrives for the second time, the algorithm tries to match it to
Mr (i). Otherwise, a node of type i is left unmatched. See Algorithm 4 for the pseudocode.
B������K�������. Bahmani and Kapralov [3] observed that the performance of Feldman et
al. algorithm can be improved by modifying the preprocessing stage. Recall, that G refers to the
type graph, eG to the associated �ow network in F������E�A�, and f is an integral max �ow ineG. Consider a subset A of L and de�ne Az to be those vertices in A such that the amount of �ow
through them in f is z for z 2 {0, 1, 2}. In other words, no �ow goes through vertices in A0, one
unit of �ow goes through each vertex in A1, and two units of �ow go through each vertex in A2. The
main insight of Bahmani and Kapralov is that the more balanced the �ow is the better, i.e., we want
A1 to be as large as possible. They give a procedure that redirects some of the �ow from A2 into A0

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: November 2019.

7 / 19

Comments on BMM in the i..i.d. model

Note that the Feldman et al algorithm is not “greedy” in the sense that it
can leave online nodes unmatched even when there are available
unmatched offline nodes.

Any online algorithm for the unweighted BMM can be made greedy and
doing so cannot worsen the competitive ratio. In practice, converting an
algorithm so as to make it greedy will substantially improve the number of
nodes matched. (I am posting a paper in this regard that presents an
experimental study comparing different algorithms in the known i.i.d.
model. The paper also provides a brief explanation of known i.i.d.
algorithms for BMM.)
The Feldman et al algorithm achieved an expected (with respect to the

distribution) approximation ratio α =
1− 2

e2
4
3
− 2

3e

≈ .67 and this ratio is tight for

their algorithm. In fact, Feldman et al prove a stronger positive resulti,
namely:

∀ε > 0, with probability at least 1− eΩ(n), as long as OPT = Ω(n), their
algorithm ALG achieves ALG

OPT − ε ≥ α. 8 / 19

Improvements on the Feldman et al i.i.d. ratio

Subsequently a number of papers build on the idea of using two matchings
to derive improved approximation ratios. Here is a partial history of results
all based on the “best of two matchings” idea initiated in Feldman et al.

Bahmani and Kapralov [2010] For integral types .699− ε.
Manshadi et al [2011] For arbitrary types, .705 and .707 for integral
types. Furthermore, they establish the currently best inapproximation
.823 for known i.i.d. arrivals implying the same for the ROM model
(which is the best inapproximation known for the ROM model).

Jaillet and Lu [2014] For integral types, ,729 and .706 for arbitrary
types. They also have a .725 ratio for offline vertex weighted graphs.

The current best ratio is .,7299 due to Brubach et al [2016]. They
also have the best ratio .705 for the edge weighted case.

9 / 19

Prophet Inequalities

We have seen that knowing distributional information can fascilitate better
approximations. We now consider a stochastic version of the secretary
problem. Specifically, suppose we have n random real valued variables
X1,X2, . . . ,Xn where each Xi is defined by an adversarially chosen
distribution 1 denoted by Fi . Abusing notation, we will use Xi to refer to
the distribution. The Xi are independent but not necessarily identical. In
the prophet inequalities problem, the Xi arrive online (i.e., in a sequence
determined adversarially) at which point a weight value wi is drawn from
the distribution Xi . Just as in the classical secratary problem, we must
either accept wi or discard it permanently. The goal is construct an
algorithm A which maximizes the expectation of the chosen variable which
we will call w∗. Thus, like the secretary problem, we are looking for a
stopping rule.

1The distributions can be continuous so that Fi is the cumulative distribution
function or Fi can be discrete so that each possible element has a given probability. For
definitness, we will assume a discrete probability distribution but the results and analysis
can be modified to apply to continuous distributions.

10 / 19

Defining the competitive ratio for prophet
inequalities

We know that if the values (and not the distributions) are determined
adversarially and not known in advance then the approximation can be
arbitarilty bad. What approximation can be achieved if we know the
distributions for each Xi but not the values wi until they are drawn from
the distribution?

As in our previous discussion of i.i.d. distributions, the approriate
benchmark is E[maxi wi] rather than comparison against the maximum wi

in the sequence. That is, we wish to bound the ratio E[w∗]
E[maxwi]

.

NOTE: In the adversarial setting of the secretary problem (i.e. where the
adversary selects the weights of each online candidate), the problems of
maximizing the probability of selecting the winner and maximizing the
competitive ratio are equivalent. However, in the i.i.d. setting this
equivalence is no longer applicable. Most work in the i.i.d. setting focuses
on the distributional competitive ratio and not the probability of choosing
the best solution. 11 / 19

The optimal stopping rule for prophet inequalities

It turns out that there is again (like the secretary problem) a simple

uniform stopping rule. Let T = E[maxi wi]
2 . The uniform stopping rule is to

accept the first wi > T and then stop. This threshold stopping rule turns
out to be the best online algorithm.

This last statement deserves some clarification. When we say “online” in
the context of a stochastic algorithm, we mean that the distributions are
adversarial but known in advance while the drawn values occur online.

Aside: For any sequence of distributions with finite support, there is an
online stopping rule that can be efficiently determined by an offline
dynamic programming algorithm. The main point is that the algorithm
must know the entire sequence of distributions in advance.

12 / 19

The ratio for prophet inequalities

Theorem

Let A be the online algorithms using the above stopping rule. For every
set of independent distributions X1,X2, . . . ,Xn, A has competitive ratio at
least 1

2 . Furthermore this is an optimal stopping rule in the sense that for
any ε > 0, there are distributions such that the expected value of any
online algorithm is at most (1

2 − ε) · E[maxiwi].

For the negative example, let X1 be a deterministic distribution with value
1 and let X2 be the distribution such that w2 = 1

ε with probility ε and 0
with probability 1− ε for some arbitrarily small ε > 0. An online algorithm
can accept w1 = 1 and obtain that value or it can decide to reject w1 and
the obtain E[X2] = 1. So that any online algorithm will obtain value 1. On
the other hand.

Fact

For the above distributions, max{X1,X2} = (2− ε).

13 / 19

The proof of the prophet inequalities competitive
ratio

Here first is the proof of the fact establishing the negative result. Let Y be
any random variable and let Z be a random {0, 1} indicator variable with
p = Prob[Z]. Then

E[Y] = E[Y |Z] · p + E[Y |Z̄] · (1− p)

The claim follows by setting Y = max{X1,X2}, and letting Z be the
indicator variable for X1 ≥ X2 so that p = prob[Z] = (1− ε).

For the positive result, we need to lower bound E[A] and upper bound
T = E[Y]/2 for Y = maxi wi .

The proof for the positive result is in the text.

14 / 19

Prophet secretary problem

Esfandiari et al [2017] consider the prophet secretary problem, a natural
combination of the prophet inequalities and secretary problems. As in the
prophet inequalities, we have n random variables X1, . . . ,Xn drawn from n
adversarially chosen independent (but not necessarily identical)
distributions F1, . . . ,Fn. But now rather than these Xi being presented in
an adversarial online order, they are input in random order (i.e. the ROM
model as in the secretary problem). To be more precise, the i th input seen
by the algorithm is (Xπ(i),Fπ(i)) where π is a random permutation of [1, n].

For the prophet secretary problem, Esfandiari et al [2017] show no single
uniform threshold can achieve a competitive ratio better than the 1

2
prophet inequalities ratio. Using n different non-adaptive thresholds, they
achieve competitive ratio 1− 1

e . They also show that no prophet secretary
algorithmn can have a ratio better than .73.

15 / 19

Stocahstic probing and stochastic rewards

A different type of stochastic optimization involves stochastic probing. In
stochastic probing, input items come with a probability, and to reveal the
actual item, an algorithm= must probe the item.

In some probing variants, once the item is probed, the algorithm is
committed to the item. In other variants there may be some associated
number of probes that are allowed,

Lets consider the BMM problem in the stochastic-commit model and call
this the stochastic-rewards problem as it is sometimes referred to.

In the stochastic rewards problem, when an online vertex u arrives all
adjacent edges e = (u, v) are labelled with a probability pe = p(u,v) which
denotes the probability that the edge exists. Furthermore, u has a patience
constraint tu.

16 / 19

Stochastic rewards continued

In order to attempt to match u to some available offline v , an online
algorithm must probe the edges adjacent to u in some order. The patience
constraint bounds the number of times edges adjacent to u can be probed.

Once a probed edge actually exists, the online algorithm is commtted to
using that edge in the matching. The offline vertices may or may not be
weighted.

When the patience parameter tu = 1 for all online vertices, this is called
the stochastic rewards problem without patience.

What is the benchmark against which the online =algorithm is competing?
One urealistic benchmark is that the adversary-offline algorithm get to see
the instance graph. Then consider an adversarial type graph with one
online node having paience 1 and n offline vertices such that each edge
has probability 1/n. Then the graph will have an edge in the instance
graph with probability 1− [(1− 1

n]n ≈ 1− 1
e which is then the expected

offline reward whereas the online algorithm only has expected reward 1/n.
17 / 19

A better benchmark

One often uses an optimal LP fractional solution to some apprpriate
relaxation of the matching problem to obtain an upper bound on a
benchmafrk solution.

It seems like a good “natural” extension to the non-stochastc benchmark
(i.e. an optimal solution) is the following: The adversary sets the
probabilities of the edges and the benchmark can reveal edges in any
order. In particular, it can look at the online nodes in any order. The only
offline constraint is that the benchmark is also limited by the patience
constraints of each edge.

The stochastic rewards without patience originated in Mehta and
Panigraph [2012]. (Their LP benchmark that can be argueded is too
powerful.)

I am following Brubach et al [2019] who consider the stochastic rewards
with patience problem with offline vertices weighted. They articulated the
“natural benchmark” above and use a more restricted LP to upper bound
such a benchmark. 18 / 19

End of Lecture 10

We ended on slide 17. We will start the final lecture by restating the
stochastic rewards problem.

19 / 19

	Week 10

