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Week 1

Course Organization:

1 Sources: The text is a book currently being written by Allan Borodin
and Denis Pankratov. Lots of additional sources including

I various specialized graduate textbooks
I my posted and sktechy lecture notes (beware typos)
I lecture notes from other Universities and short courses, and
I research papers.

2 Lectures and Tutorials: One two-three hour lecture per week with
tutorials as needed and requested; not sure if we will have a TA.
Wednesdays are a little problematic for me but we will wait until
October to see if we need to or can change the day when this course
meets.

3 Office hours: TBA but I always welcome questions (in class or
otherwise). So feel free to drop by and/or email to schedule a time.
My contact information: SF 2303B; bor@cs.toronto.edu. The course
web page is www.cs.toronto.edu/˜bor/2421f19
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Course Description

In a seminal 1985 paper, Sleator and Tarjan argued for a worst case
analysis of online algorithms such as paging and list accessing. This
became known as competitive analysis. Not surprisingly, such worst
analysis was already present in earlier works such as

Graham [1966,1969] makespan

Garey, Graham and Ullman [1972] bin packing

Yao bin packing

Since these earlier works, there has been a continuing and growing interest
in online algorithms, in terms of applications (eg online advertising and
other auctions, graph colouring and matching, maximum satisfiability,
etc.), alternative online models (eg small space streaming, sequential and
parallel streams), extensions to the basic online model (revocable
decisions, greedy-like algorithms) and alternatives to the competitive
analysis framework (eg, a return to stochastic input models).
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Course Description continued

This course relates to major themes of interest within theoretical computer
science that emphasize ”conceptually simple algorithms”, “beyond worst
case analysis”, and “decision making under uncertainty”.

A preliminary table of contents and some preliminary chapters for our
textbook will be available. The text is constantly being modified but I will
try to indicate when there have been any significant changes.

I have password protected the text chapters since the text thus far is in a
very preliminary stage and is bound to have technical mistakes and
improper or incomplete references. hence I do not want the text to be
widely distributed.
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More on course focus and a disclaimer

The Design and Analysis of Algorithms is a very active field. As part
of this activity, I think it is fair to say that there is a growing interest
in conceptually simple algorithms (e.g. a new conference SOSA
aligned with SODA). Furthermore, one might even claim that online
algorithms and other “myopic algorithms” (e.g. greedy algorithms) is
having a renaissance in interest. Our course is a foundational course
in the sense that even though our focus is very specific, the topic is
broad enough to have direct relation with concepts used more
generally in the design and analysis of algorithms (e.g., primal dual
algorithms and analysis).

Disclaimer: We will not try to “cover” all the recent developments
within this topic. Some of the results are quite technical. We will
often just mention some results or just sketch the main ideas. Our
goal is to try to present a spectrum of concepts and results. For the
same of understanding, we will often forgo the best known result for a
result that is “good enough” to establish basic concepts and results.
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What is appropriate background? Grading

Our undergraduate CSC 373 is essentially the prerequisite.
Any of the popular undergraduate texts. For example, Kleinberg and
Tardos; Cormen, Leiserson, Rivest and Stein; DasGupta,
Papadimitriou and Vazirani.
It certainly helps to have a good math background and in particular
understand basic probability concepts (see our Probability Primer),
and some graph theory.

BUT any CS/ECE/Math graduate student (or mathematically oriented
undergrad) should find the course accessible and useful.

Grading: Will depend on how many students are taking this course
for credit. I am thinking that we may run half of this course as a
reading course related to the new text depending on your interest in
the material relating to the text. I will soon provide an initial
assignment to help insure that everyone has a reasonable idea of the
technical depth of the course. The reading part of the course will
allow us to follow some of the current research within our topic. 6 / 39



Some informal definitions

Most of what I am saying today appears in chapters 1 and 2 of the text.

For the main part, we will consider online algorithms in the context of
request-answer games and optimization. Namely, input items arrive
sequentially in discrete steps and an online algorithm must respond to
each input item before the next item arrives. The goal is to achieve
some objective. Of course, one cannot expect an online algorithm to
perform as well as an offline algorithm that initially has complete
knowledge of the entire input. Competitive analysis is a worst case
analysis that tries to understand how well an online algorithm can do
with respect to an optimal solution for every possible input sequence.
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Some informal definitions continued

There are, however, alternative meanings for an algorithm being
“online”. In scheduling, online usually means a real-time algorithm in
the sense that jobs arrive in continuous time and the algorithm can
respond to a job arrival at any time after it arrives but delays in
responding will usually impact the desired objective.

In searching an unknown environment, an online algorithm has to
discover the environment as it is searching.

A myopic algorithm generalizes the online concept in that the
algorithm may have some limited knowledge of the future. Greedy
algorithms are a primary example of a myopic algorithm. We shall
study an abstraction of greedy algorithms called priority algorithms
which in hindsight could have been called myopic algorithms.
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Some informal definitions continued

We will also consider streaming algorithms where input items are
arriving online but there may or may not be a requirement to respond
immediately to each new input item. The focus in streaming
algorithms is the impact of limited space. Often the objective is to
maintain statistics for very large streams of data while using only say
O(log n) space. More recently, there has been some interest in
semi-streaming algorithms where for exanple we consider graph
optimization problems using space Õ(n) space rather that O(m)
space where n = |V | and m = |E |. .

We may also discuss dynamic algorithms where input requests are
updates (e.g., add or delete an edge) and queries (e.g. what is the
current diameter of the graph). Here we are usually interested in the
tradeoff between the time for updates and the time for queries.

Streaming and dynamic algorithms are clearly online algorithms, also
usually studied in the worst case scenario, but with a different focus than
online algorithms as studied in competitive analysis.
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Why restrict ourselves to conceptually simple
algorithms and in particular why restrict ourselves to
online and myopic algorithms?

In some applications, it is more important to produce a “reasonably good”
solution quickly rather than getting a better solution or best solution that
may take much longer to create or will take much longer to execute.
Additionally, in some applications (e.g., auctions), users want solutions
(e.g., who gets what and at what cost) they can understand.

Some applications are necessarily online (e.g., paging, real time
scheduling) and hence there is no alternative.

Even if an application is not necessarily online, an online algorithm may
provide a conceptually simple solution, or a solution that can be easily
modified using additional offline information to create a good solution.

Greedy and priority algorithms are an extension of online algorithms where
the algorithm has some limited ability to create the sequence (but not the
set) of input items but still has to make immediate decisions for each item.
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Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.

The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.

The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

Huffman’s algorithm for optimal prefix codes.

Graham’s online and LPT approximation algorithms for makespan
minimization on identical machines.

The 2-approximation online algorithm for unweighted vertex cover via
maximal matching.

The “natural greedy” ln(m) approximation algorithm for set cover.
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Lets start with examples from Chapters 1 and 2.

In Chapter 1, we discuss what seems like a toy problem, the ski rental
problem. We also discuss the paging problem. These both fall within the
request answer framework discussed in Chapter 2.

In Chapter 2, we discuss two minimization problems (makespan and bin
packing) and two maximization problems (time series search and one-way
trading) and provide deterministic online algorithms for these problems.

We analyze these algorithms from the perspective of their competitive
ratio as defined in Chapter 2.
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The ski rental problem

We start with a problem that can be considered a toy problem but does
model some realistic scenarios. Furthermore, in Chapter 4 we consider
some of the extensions of this problem (multislope ski rental, the
Bahncard problem, and the TCP acknowledgement problem) adding
additional motivation. The ski rental or the leasing problem is as follows:

A skier (i.e. an online algorithm) has to decide every day (or every time
thinking about a ski day) whether to buy (at some price b) a pair of skis
or to rent (at some price r < b per day) for the day. The problem is that
the skier doesn’t know if and when the weather will change and the season
will end (or he/she will just lose interest). If the skier knew the season
would last long enough it would clearly pay to buy but “today” could be
the last day that the skier will ever ski again in which case the skier would
clearly rent for the day. What to do?

Aside: I have faced this problem recently when on sabbatical trying to
decide if I should buy a bike (and hopefully resell before leaving) or rent
whenever I wanted. Have you faced this problem in some form?
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The ski rental problem continued

As simple as this problem is, it does raise some concepts and issues that
are basic to our topic and more generally to algorithm design and
complexity theory. . Here are basic concepts and issues that we will often
encounter:

1 We view the weather as an adversary whose goal is make the skiers’
decision to look bad in hindsight. This extent to which the online
decisions are bad in hingsight will be captured by the competitive
ratio. This is analgous to the concept of regret as used in online
learning which is the subject of Chapter 18. For deterministic
algorithms in the worst case setting, note that the adversary knows an
optimal solution for any instance.

2 Does it help for an online algorithm to use randomization?
3 As soon as randomization is introduced, there are different concepts

as to the power of an adversary.
4 In Chapter 16 we depart from the worst case setting and consider

stochastic inputs. This raises questions as to what are appropriate
“benchmarks” against which an online algorithm is competing.
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The best online algorithm

For this “classic” version of the ski rental problem, the adversary’s power
is simply to determine when is the last day of skiing.

We will first show that there is a simple deterministic algorithm that can
insure that on every input instance, the algorithm will pay no more than
twice the cost of an optimum solution. Then we will show that this is the
best possible competitive ratio (i.e., ratio of algorithm to optimal cost).

Note that in this problem there is a simple and efficient offline algorithm
that an adversary (knowing the number of ski days which it determines)
can use to compute an optimal solution OPT . What is an optimal
algorithm for the adversary? But for the concept of the competitive ratio,
it might be the case that an optimal solution cannot be computed
efficiently or might not even know any optimal algorithm. But we do need
to know something about properties of an optimal algorithm.
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The ski rental algorithm

Here is the online algorithm (or one might simply say strategy in this case)
that achieves competitive ratio ρ ≤ 2− 1

b →b→∞ 2.

Note: I am going to abuse notation and use ALG and OPT to denote
both a solution and its cost.

Competitive ski rental algorithm ALG

Rent for up to b − 1 days and then buy.

Proof of the competitive bound for this simple strategy

Without loss of generality (why?) let r = 1 and hence b ≥ 1. Let g =
number of ski days. Then OPT = min{g , b} depending on whether g ≤ b
or g > b. Note: g > b includes never buying.

If g < b, then ALG just rents and its cost is g which is also the
optimal cost so ALG = g ≤ (2− 1

b )g = (2− 1
b )OPT ,

If g ≥ b then ALG ’s cost is b − 1 + b = (2b − 1) and OPT pays b so
that ALG

OPT = 2b−1
b = 2− 1

b .
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Reflections on the ski rental algorithm and analysis

It is easy to see that this analysis of the algorithm is tight. But is this the
best we can do? That is, is there any deterministic algorithm that can do
better (in terms of the worst case ratio)?

The answer is that this is the best determininstic algorithm algorithm.
Suppose that an algorithm ALG decides to buy on some day i (or decides
to never buy).

If i ≤ b − 1 then the adversary decides that day i is the last day of
skiing. OPT pays i and ALG pays i − 1 + b ≥ i − 1 + (i + 1) = 2i

If i ≥ b, then the adversary ends skiing after the first 2b days. Now
OPT pays b and ALG pays i − 1 + b ≥ b − 1 + b = 2b − 1 so that
the ratio ALG

OPT is at least 2− 1
b
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More reflections on the analysis

In principle, in competitive analysis we need not care if the online
algorithm is efficient. Note that is the above analysis we didn’t care how
the algorithm decided to chose i . We are just trying to uderstand the
limitations imposed by the myopic online requirement. Of course, in
practice, we do care about efficient algorithms and although the analysis
may ignore computational efficiency, online algorithms tend to be very
efficient. The negative result is an example of an information theroretic
argument.

Indeed the competitive ski rental algorithm is exceptionally computational
simple. The algorithm only needs to have memory to remember what day
it is. However, we allow online algorithms to keep as much information
about previous inputs as it wishes and make decisions based on all this
information.

In the analysis it seems like the adversary has to be observing what ALG is
doing to know when to end the skiing. But since ALG is deterministic, the
adversary knows in advance which day (if ever) ALG will buy.
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Can randomization help?

In a randomized online algorithm, the algorithm can make decisions as a
probabilistic function of all the previous information. Can randomization
help?

The answer is yes but the algorithm and its analysis is a little more
involved. Essentially the algorithm uses a partitcular probability density
function to choose the time to buy. We also have to be a little careful in
what we mean by the competitve ratio of a randomized algorithm. But for
now here is the statement of the result (which also holds for the
generalizations of ski rental previously mentioned):

Randomized ski rental competitive ratio

There is a randomized algorithm for the ski rental problem achieving
competitive ratio e

e−1 ≈ 1.58 against an oblivious adversary (i.e., an
adversary that see the algorithm but not the random bits and hence not
the actual decisions of the algorithm).
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Graham’s online and LPT makespan algorithms

Let’s continue with two greedy algorithms that date back to 1966 and
1969 papers.

These are also good starting points since (preceding
NP-completeness) Graham conjectured that makspan is a hard
(requiring exponential time) problem to compute optimally but for
which there were worst case approximation ratios (although he didn’t
use that terminology).

This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).

Moreover, there are again some general concepts to be observed in
this work and even after nearly 50 years, there are still open questions
concerning the many variants of makespan problems.
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The makespan problem for identical machines

The input consists of n jobs J = J1 . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[ j] and OPT≥ 1

m

n�
j=1

T[ j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[ j] ≤ OPT. To finish the proof, we must show that Total[i]− T[ j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[ j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[ j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[ j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[ j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i
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Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
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Aside: The Many Variants of Online Algorithms

As I indicated, Graham’s algorithm could be viewed as the first example of
what has become known as competitive analysis (as named in a paper by
Manasse, McGeoch and Sleator) following the paper by Sleator and Tarjan
which explicitly advocated for this type of analysis. Another early (pre
Sleator and Tarjan) example of such analysis was Yao’s analysis of online
bin packing algorithms.

As we already stated, in competitive analysis we compare the performance
of an online algorithm against that of an optimal solution. The meaning of
online algorithm here is that input items arrive sequentially and the
algorithm must make an irrevocable decision concerning each item. (For
makespan, an item is a job and the decision is to choose a machine on
which the item is scheduled.)
Let’s review and expand upon what we already mentioned in regard to the
ski rental problem.

What determines the order of input item arrivals?
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The Many Variants of Online Algorithms continued

In the “standard” meaning of online algorithms (for CS theory), we
think of an adversary as creating a nemesis input set and the ordering
of the input items in that set. So this is traditional worst case analysis
as in approximation algorithms applied to online algorithms. If not
otherwise stated, we will assume this as the meaning of an online
algorithm and if we need to be more precise we can say online
adversarial model.
We will also sometimes consider an online stochastic model where an
adversary defines an input distribution and then input items are
sequentially generated. There can be more general stochastic models
(e.g., a Markov process) but the i.i.d model is common in analysis.
Stochastic analysis as often seen in OR.
In the i.i.d model, we can assume that the distribution is known by
the algorithm or unknown.
In the random order model (ROM), an adversary creates a size n
nemesis input set and then the items from that set are given in a
uniform random order (i.e. uniform over the n! permutations)
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Second aside: more general online frameworks

In the standard online model (and the variants we just mentioned), we are
considering a one pass algorithm that makes one irrevocable decision for
each input item.

There are many extensions of this one pass paradigm. For example:

An algorithm is allowed some limited ability to revoke previous
decisions.
There may be some forms of lookahead (e.g. buffering of inputs).
The algorithm may maintain a “small’ number of solutions and then
(say) take the best of the final solutions.
The algorithm may do several passes over the input items.
The algorithm may be given (in advance) some advice bits based on
the entire input.

Throughout our discussion of algorithms, we can consider deterministic or
randomized algorithms. In the online models, the randomization is in
terms of the decisions being made. (Of course, the ROM model is an
example of where the ordering of the inputs is randomized.)

24 / 39



A third aside: other measures of performance

The above variants address the issues of alternative input models, and
relaxed versions of the online paradigm.

Competitive analysis is really just asymptotic approximation ratio analysis
applied to online algorithms. Given the number of papers devoted to
online competitive analysis, it is the standard measure of performance.

However, it has long been recognized that as a measure of performance,
competitive analysis is often at odds with what seems to be observable in
practice. Therefore, many alternative measures have been proposed. An
overview of a more systematic study of alternative measures (as well as
relaxed versions of the online paradigm and restricted input instances) for
online algorithms is provided in Kim Larsen’s lecture slides that I have
placed on the course web site.

See, for example, the discussion of the accommodating function measure
(for the dual bin packing problem), the relative worst order meaure for the
bin packing coloring problem, and the page fault rate measure for paging.

25 / 39



Returning to Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m ;

that is, for any set of jobs J , CGreedy (J ) ≤ (2− 1
m )COPT (J ).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT ≥ (
∑

j pj)/m;OPT ≥ maxjpj
What is CGreedy in terms of these requirements for any schedule?
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Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is the analogy of asymptotic
approximation ratios.

NOTE: Often, we will not provide proofs in the lecture notes but rather
will do or sketch proofs in class (or leave a proof as an exercise).

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.
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Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

We will present the priority model for greedy (and greedy-like)
algorithms. I claim that all the algorithms mentioned on slide 10 can
be formulated within the priority model.

Assuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n logm)

which is (n log n) since we can assume n ≥ m.
I the LPT algorithm would have time complexity O(n log n).
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Partial Enumeration Greedy

Combining the LPT idea with a brute force approach improves the
approximation ratio but at a significant increase in time complexity.

I call such an algorithm a “partial enumeration greedy” algorithm.

Optimally schedule the largest k jobs (for 0 ≤ k ≤ n) and then greedily
schedule the remaining jobs (in any order).

The algorithm has approximation ratio no worse than

(
1 +

1− 1
m

1+bk/mc

)
.

Graham also shows that this bound is tight for k ≡ 0 mod m.

The running time is O(mk + n log n).

Setting k = 1−ε
ε m gives a ratio of at most (1 + ε) so that for any

fixed m, this is a PTAS (polynomial time approximation scheme).
with time O(mm/ε + n log n).
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Makespan: Some additional comments

There are many refinements and variants of the makespan problem.

There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the identical machines
makespan problem.

The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m ≥ 4. For arbitrary m, as far as I know,
following a series of previous results, the best known approximation
ratio is 1.9201 (Fleischer and Wahl) and there is 1.88 inapproximation
bound (Rudin). Basic idea: leave some room for a possible large job;
this forces the online algorithm to be non-greedy in some sense but
still within the online model.

Randomization can provide somewhat better competitive ratios.

Makespan has been actively studied with respect to three other
machine models.
We plan to consider these other models when we get to Chapter 4.
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The uniformly related machine model

Each machine i has a speed si

As in the identical machines model, job Jj is described by a
processing time or load pj .

The processing time to schedule job Jj on machine i is pj/si .

There is an online algorithm that achieves a constant competitive
ratio.

I think the best known deterministic (resp. randomized) online ratio is
5.828 (resp. 4.311) due to P. Berman et al [2000] following the first
constant ratio by Aspnes et al.

Ebenlendr and Sgall [2015] establish a deterministic online
inapproximation of 2.564 following the 2.438 deterministic online
inapproximation of Berman et al. who also proved a 1.8372
inapproximation for any randomized online algorithm.
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The restricted machines model

Every job Jj is described by a pair (pj , Sj) where Sj ⊆ {1, . . . ,m} is
the set of machines on which Jj can be scheduled.
This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.
Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting problem and we will look
at some recent work later.
Azar et al show that log2(m) (resp. ln(m)) is (up to ±1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.
It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Ω( logm

log logm ) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable
machines.
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The unrelated machines model

This is the most general of the makespan machine models.

Now a job Jj is represented by a vector (pj ,1, . . . , pj ,m) where pj ,i is
the time to process job Jj on machine i .

A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

There is an online algorithm with approximation O(logm). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard (which we will discuss later).

NOTE: All statements about what we will do later should be
understood as intentions and not promises.
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Makespan with precedence constraints; how much
should we trust our intuition

Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose ≺ is a partial ordering on
jobs meaning that if Ji ≺ Jk then Ji must complete before Jk can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2− 1

m is achieved by “the natural greedy algorithm”, call it G≺.

Graham’s 1969 paper is entitled “Bounds on Multiprocessing Timing
Anomalies” pointing out some very non-intuitive anomalies that can occur.

Consider G≺ and suppose we have a given an input instance of the
makespan with precedence problem. Which of the following should never
lead to an increase in the makepan objective for the instance?

Relaxing the precedence ≺
Decreasing the processing time of some jobs
Adding more machines

In fact, all of these changes could increase the makespan value.
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The bin packing problem

Our next classic minimization problem is the one-dimensional bin packing
problem. In this problem we have a set of items each having a size or
weight xj and these items have to all be packed into bins of a fixed size B.
The objective is to minimize the number of bins. (This problem is
sometimes referred to as the cutting stock problem). Without loss of
generality, we can set B = 1 and then assume that xj ≤ 1 for all j .

Online bin packing was first studied in a 1972 STOC conference paper by
Garey, Graham and Ullman, and then in a 1973 Johnson FOCS paper, and
in a 1974 journal article combining Garey et al with David Johnson and
Alan Demers. There are many subsequent bin packing papers dealing with
online and greedy type algorithms. This work (proceeded by Graham’s
earlier makespan results) became the driving force for the area of
approximation algiorithms following the introduction of NP-completeness.
Johnson’s PHD thesis was devoted to approximation algorithms.
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Bin packing continued

There are some natural online algorithms for the bin packing problem
which in turn have natural greedy extensions when initially ordering the xj .
Furthermore, although the problem is also NP-complete, (i.e., deciding if
an instance can be packed into 2 bins is NP complete), there are offline
algorithms ALG such that ALG ≤ OPT + o(OPT ) so that the asymptotic
approximation ratio is 1. As far as I know, as an offline problem there may
be an algorithm that achieves ALG ≤ OPT + 1.

There are also higher dimensional versions. For example, in dimension 2,
the goal is to pack rectangles (usually axis aligned) into say 1 by 1 square
bins.
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Three natural online algorithms

Consider the following three online algorithm:

1 NextFIT: If the next item xj does not fit into the most recently
opened bin, then open a new bin and place the new item in that bin.
See Algorithm 2 in the text for pseudocode. Note this is a myopic
online algorithm but not a greedy algorithm in the following “live for
today sense”: for each input, we make a decision so as to optimize
the objective function.

2 FirstFit: Find the first bin (if any exists) among all opened bins that
has enough remaining space to accommodate the newly arriving item.
If such a bin exists, place the new item there. Otherwise, open a new
bin and place the new item in the new bin. See Algorithm 3 in the
text for pseudocode.

3 BestFit: Find a bin among all opened bins that has minimum
remaining space among all bins that have enough space to
accommodate the current arriving item. If there are no bins that can
accommodate the current arriving item, open a new bin and place the
new item in the new bin. See Algorithm 4 for the pseudocode.
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The competitveness of the online algorithms

1 The competitive ratio is NextFit = 2.
2 The competitive ratio for FirstFit and BestFit is 1.7. Recently this

was shown to be a strict competitive ratio.
3 These (asymptotic) ratios are tight for these algorithms.
4 There are now better asymoptotic competitive ratio where the current

best has competitiveness 1.57829 as compared with the best known
lower (i.e. negative result) is 1.54037

If we are allowed to first sort the items so that x1 ≥ x2 . . . ≥ xn, then for
FirstFit-Decreasing and BestFit-Decreasing, it has been shown that these
algorithms satisfy ALG ≤ 11

9 OPT + 1.
Since we have presented the results for the online bin packing algorithms
in the text, we shall just sketch those results on the board. (We also
presented the ski rental and Graham’s makespan results in the text but
wanted to use those to introduce the topic. The analysis for FirstFit and
BestFIt is a little more involved than for NextFIt but still these analyses
are all “combinatorial”.
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Formalizing Request-Answer games and the
Competitive Ratio for Deterministic Minimization
Problems

Having presented three example of online problems and corresponding
online algorithms, we present the precise definitions in Chapter 2.

The problems and online algorithms we consider in Part I of the text (with
the exception of the Line Search Problem) can be abstracted by
request-answer games and the Online Algorithm Template.
Request-answer games abstract both mininization and maximization
problems. We first define the competitive ratio for minimization problems
and algorithms. Following that we will consider two maximization
problems and the corresponding definition for the competitive ratio.

We define the competitve ratio as follows:
ρ(ALG ) = limsupOPT (I→∞

ALG(I)
OPT (I)
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