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Abstract

We consider the online variant of facility location, in
which demand points arrive one at a time and we must
maintain a set of facilities to service these points. We pro-
vide a randomized online -competitive algorithm in the
case where points arrive in random order. If points are
ordered adversarially, we show that no algorithm can be
constant-competitive, and provide an -competitive
algorithm. Our algorithms are randomized and the analy-
sis depends heavily on the concept of expected waiting time.
We also combine our techniques with those of Charikar and
Guha to provide a linear-time constant approximation for
the offline facility location problem.

1. Introduction

Many applications of the facility location problem cre-
ate natural online scenarios. For example, suppose we are
asked to construct a network. We need to purchase various
servers and connect each client to one of the servers. The
cost to connect a client to a server (purchasing a cable) is
linear in the distance between them. Once the network has
been constructed, additional clients may need to be added.
In this case we must purchase additional cables and pos-
sibly new servers in order to accommodate the increase in
demand. We would like to minimize our total cost.

As another example, consider the problem of clustering
the web. Using various attributes, we can map web pages
into a content space, and we would like to divide these
pages into a number of clusters. The pages of each cluster
should be relatively close in the content space; on the other
hand, we don’t want to create too many clusters (one clus-
ter for each point, for example, is unacceptable). The web
grows rapidly, and new web pages will need to be added to
the clustering. We would like to maintain a good cluster-
ing without tearing up existing clusters when the new web
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pages arrive.

Both of the above problems are applications of facility
location. In facility location, we are given a metric space
along with a facility cost for each node. In the uniform case,
this facility cost is identical for every node; in the nonuni-
form case it may differ. We are also given a set of demand
points. The service cost of a demand point is just the dis-
tance to the nearest open facility. We must determine a set
of facilities to open such that the total facility cost plus ser-
vice cost is minimized. Facility location has been the sub-
ject of a great deal of previous work [13, 3, 2, 8, 7, 4, 5]
in an offline setting, where all the demand points are known
ahead of time. The problem is MAX-SNP Hard and the first
constant approximation was given by Shmoys, Tardos, and
Aardal [13]; this was later improved to by Charikar
and Guha [2] and to by Sviridenko [14]. These ap-
proximations are based on linear program rounding; local
search techniques can provide much faster combinatorial al-
gorithms. Such techniques were first analyzed by Korupolu,
Plaxton, and Rajaraman [9, 10] and the analysis was later
improved by Charikar and Guha [2] to give a ap-
proximation in time. Similar local search
techniques were extended to a number of related problems
by Chudak and Williamson [6], by Arya, Garg, Khandekar,
Pandit, Meyerson, and Munagala [1] and by Pál, Tardos,
and Wexler [12].

We observe that the examples given in the beginning
(and many other natural applications of facility location)
are in fact online problems. New clients may ask to join
a network after the original structure has been built, or new
pages may need to be clustered without disturbing the exist-
ing clusters. We will consider such an online case, in which
the demands arrive one at a time and each new demand must
be assigned to a facility upon arrival. Our goal is to be com-
petitive against the offline solution which was given all the
demands up front.

Unfortunately, it is provably hard to compete against
adversarial sequences of demands. As we show in sec-
tion 4, no algorithm can guarantee a constant approxima-
tion against such a sequence. We will reduce the power of
the adversary by assuming that the demands arrive in ran-
dom order. The adversary designs the metric space and set

1

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science  (FOCSí01) 
0-7695-1390-5/02 $17.00 © 2002 ! IEEE 



of demand points; these points are then permuted randomly
and fed to the algorithm. Random ordering allows us to
give -competitive online algorithms, even in the case
of nonuniform facility costs. Against adversarial inputs, the
same algorithms are -competitive.

This result allows incremental construction of facility lo-
cation solutions, and also produces very fast constant ap-
proximations. In section 5 we show how to combine our
approach with local search to obtain an offline algorithm
which gives a approximation in running time

. Since the input is a metric space, consisting of
a list of distances between all pairs of points, this is essen-
tially linear time. The result improves the running time of
Charikar and Guha’s local search algorithm [2] by a loga-
rithmic factor.

To our knowledge, the only previous online work for
facility location problems is the paper of Mettu and Plax-
ton [11] in which the locations of the demands are all known
ahead of time but the number of facilities to be placed in-
creases incrementally in an online fashion. This contrasts
with our problem, in which the demands themselves arrive
online and we are allowed to open as many facilities as we
like provided we pay a given cost for each facility.

2. Uniform Facility Costs

We would like to select a set of facilities to open in
order to provide service to a set of demands. Our goal is
to minimize the total cost .
The first part of this cost will be referred to as the facility
cost while the second part is the service cost.

Our problem will be online, in that the set of demands
is not fully known beforehand. Suppose an adversary

creates a set of demands. The demand points are then
ordered by a random permutation (all permutations are
equally likely) and given to us one at a time.

As each point arrives, we must either open a facility at
that point (paying the facility cost ) or send this demand to
some already-open facility (paying the distance). Our algo-
rithm must make this choice without knowledge of the de-
mands (or the number of demands) which will arrive in the
future. We observe that this differs from a traditional online
model in that the order in which the demand points arrive is
random and not chosen by the adversary. In section 4 we
will consider the scenario where the order is adversarial.

Our algorithm for this problem is straightforward. When
a new demand point arrives, we measure the distance from
this demand to the closest already-open facility. Suppose
this distance is . With probability (or probability one, if
this is more than one), we will open a new facility at this

demand point. Otherwise we will send the demand to the
closest open facility.

The service cost paid by a point is bounded by the ex-
pected facility cost, and the expected facility cost is in turn
bounded by the distance to the nearest open facility. These
properties of the algorithm will be important in our analysis.

Intuitively, if many demands arrive from one region of
the space, we will eventually open a nearby facility. How
much could be paid in service cost during the time before
this nearby facility opens? Since every time we pay a ser-
vice cost we choose not to open a facility, we can upper
bound the expected service cost paid before a nearby fa-
cility opens by (the facility cost). So for each optimum
cluster, we will pay about in service cost and then open a
facility within the cluster. If this facility is close to the opti-
mum center, then the service cost of the remaining points of
the cluster will not be too high. The remaining points may
open additional facilities, but the expected facility cost paid
cannot exceed the service cost of sending all the points to
the first-opened facility. Of course, some points from the
optimum cluster may not be close to the center, and fur-
ther away points are more likely to open a facility. We will
therefore divide the demands into “good” demands which
are close to their optimum center and “bad” demands which
are far from their optimum center. This division is for anal-
ysis only. We will separately bound the cost of good and
bad points.

Suppose the optimum solution opens facilities; call
them . Let represent the distance from point

to the nearest open facility in the optimum solution.

Consider the points which the optimum sends to center
, call these points cluster . We define .

We will define and consider the closest half
of the points in to be good. The other half the points will
be bad. Let represent the cost paid when point arrives
(either to send to the closest open facility or open a new
facility). Assuming we pay the service cost even when we
open a facility at , we have (where is
the distance between and the closest center which is open
at the time arrives).

Lemma 2.1 The total expected cost of good points
is bounded by . This holds
regardless of the order in which the demand points arrive.

Proof: Suppose there exists an open facility which is within
of . If this is the case, then any point is within

of the nearest open center by triangle inequality. It
follows that would be bounded by , since
our expected cost is at most twice the service cost. The sum
over good points of this quantity is at most
since there are good points. On the other hand, it is
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possible that no such nearby facility exists. Each good point
which arrives has a chance of opening a new facility and all
good points are within of (by Markov’s Inequality).
What is the expected total service cost paid by good points
arriving before a nearby facility is opened? As each good
point arrives, we measure . The probability of creating
a center is and the cost paid if we do not open the
center is . The expected total service cost (using expected
waiting time techniques) paid before opening a facility is
bounded by . Actually opening a facility also costs , and
the argument above bounds the expected cost paid after a
facility near has opened. The total expected cost of good
points is thus bounded by the cost before a nearby center
opens ( ) plus the cost afterwards ( ).

What about the bad points? Even if a bad point opens
a facility, this facility need not be near . Thus it might
not reduce the service cost of a later point significantly. We
must use a different technique to bound the cost of the bad
points.

We observe that lemma 2.1 holds regardless of the order
in which the points arrive. Suppose we create an ordering
by first ordering the good points and then injecting the bad
points into the order in a random way. Lemma 2.1 holds in-
dependently of the injection of bad points into the ordering.
If a bad point is added to the order after many good points,
there will probably be an open facility which is near to the
optimum center. In fact, we can bound the expected cost of
any bad point in terms of the expected cost of the preceding
good point. We formalize this idea in the following lemma.

Lemma 2.2 For any bad point of cluster ,
.

Proof: Suppose when bad point arrives, the most recent
good point to arrive was good point . This occurs with
probability , equally likely to be any good point. Sup-
pose that when arrives, the center we have opened nearest
to is distance from the optimum center. Point is at
most from the nearest open center, so we will have

. On the other hand, when good point
arrived earlier, the nearest center we had opened was at

least distance from the optimum center. Thus
. We observe that .

There is also a probability of at most that point ar-
rives before all good points, in which case we will pay a
cost of at most for point . The claim follows.

Of course the cost of our algorithm is just the sum over
clusters of the cost of good points plus bad points. Using the
lemmas, we can show an expected constant approximation
ratio.

Theorem 2.1 The algorithm is constant-competitive.

Proof: Consider the cost incurred by the points of clus-
ter . Lemma 2.1 shows that

. On the other hand, we use lemma 2.2 to show
that . The
expected total cost is just the sum of the costs incurred
by good and bad points, which for cluster is bounded
by . The sum over
all points of the distance to the optimum center is exactly

so we can bound the expected cost of cluster by
. Since

the good points are exactly the half of the points which are
closest to the optimum center, we know that .
We conclude that the expected cost of cluster points for
our algorithm is at most while the optimum pays

. This holds for every cluster , so our algorithm
is within of optimum in an expected sense. This can be
improved slightly by reducing the fraction of good points
(requiring good points to be closer to the center).

3. Nonuniform Facility Costs

We consider the case where facility cost depends on the
location of the facility. We can no longer restrict ourselves
to opening facilities at demand points which have already
arrived. Suppose that the majority of points have infinite
facility cost; with constant probability one of these points
arrives first and (since we must open a facility at the first
point to arrive) we cannot be competitive against the offline
optimum which opens a facility at a finite-cost location. Be-
cause of this, we will assume that we have the entire metric
space along with facility costs on the nodes from the begin-
ning, but demands for service are arriving incrementally (in
randomized order).

The new algorithm is as follows. We will first scale the
facility costs so they increase by factors of two; we can sim-
ply round each facility cost down to the nearest factor of two
and proceed from there. This will increase the facility cost
paid by our algorithm, since the actual facility costs may be
up to twice the assumed costs. Suppose that after scaling,
the various facility costs are through in increasing or-
der, with . When a demand point arrives, we
will consider possibly opening a new facility of each differ-
ent cost value. Let be the distance from the newly arrived
point to the closest currently open facility. Let be the dis-
tance from this point to the nearest potential facility which
could be opened for cost at most . We will open the near-
est facility with cost at most with probability .
Just as in the uniform case, we can relate the service cost
to the expected facility cost of . Thus
the expected cost is bounded by just as in the uniform
case.
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The intuition behind our proof is the same; we will di-
vide the points of each cluster into good and bad points, and
show that the expected cost of the good points is bounded
independent of the order of arrival. We will then inject bad
points randomly into the ordering and bound the cost of the
bad points relative to that of the good points.

We again define good points to be the half of the points
in cluster which are closest to its optimum center . Let

be the cost which the optimum pays to open .

Lemma 3.1 The total expected cost of good points
is bounded by . This is
independent of the order of arrival of the demand points.

Proof: Let represent the distance from to the nearest
potential center of cost at most . We will say that event

occurs when we open a center which is within
of the optimum center . Any good point which chooses
to open a facility of cost or higher will cause event to
occur.

The analysis now splits into many stages; as each event
occurs a new facility closer to the optimum facility will

open, and we must modify our method of accounting for the
cost. Before event , there is some probability of opening a
center of type (thus causing event to happen). We will
show that the expected cost accumulated from this proba-
bility is small. On the other hand, there is some possibility
of opening additional centers of cost or less after event

occurs. We will show that this additional facility cost is
also bounded.

As each good point arrives, it contributes facility cost due
to each of the possible facilities we might open. The con-
tributed cost due to facilities of type is . Consider
what happens after event has occurred, but before we have
a center within of the optimum center. The contributed
cost due to facilities of type or lower is bounded by .
We know that because event has occurred.
We also know by the definition of and the fact that the
current point is good, that there must exist a center within

of which has cost at most . The definition
of requires that . No facility has been
opened within of the optimum center. Since event
has occurred, a facility within has been opened; it
follows that and thus . We
conclude that .

The total expected facility cost is , and we have shown
that a significant fraction of the facility cost paid after event

is being paid by possible facilities with cost more than .
In fact the contribution of facilities of type or higher
is at least of the total expected facility cost paid after
event . Before event , the expected cost charged (using

expected waiting times) for possible facilities of type is
exactly .

It follows that the total expected facility cost before we
have a facility within of is at most

. This is doubled to account for the service cost.

After we have a nearby facility, and thus
. Combining the inequalities yields

. Setting
gives the bound claimed.

Lemma 3.2 For any bad point of cluster ,
.

Proof: Suppose when point arrives the most recent good
point to arrive was good point . This occurs with prob-
ability . Suppose that when arrives the nearest cen-
ter is distance from . We will have .
On the other hand, when good point arrived we had

. We observe that .
There is also a probability of at most that preceded
all good points. In this case we guarantee we will open a
facility within of this point for cost at most , so the
expected cost is at most .

Much as before, we combine the lemmas to prove that
the algorithm is online constant competitive. We will also
need to account for the additional constant factor introduced
to make sure that facility costs scale by factors of two.

Theorem 3.1 The algorithm for the nonuniform case is
constant competitive.

Proof: The total cost is the sum of the cost of bad points
and good points. From lemma 3.2 this is at most

. Using the result of lemma 3.1
simplifies this to

. We observe that our expected facility cost
is equal to our expected distance cost. The process of scal-
ing the facilities may double the facility cost we actually
pay, while leaving the distances unchanged. This yields a

approximation. This can again be improved
slightly by changing the definition of “good” points.

4. Adversarial Online Facility Location

We now consider the problem where the adversary
chooses both the set of points and the order in which they
will arrive. We will first prove that no online algorithm can
be competitive for this problem. On the other hand,
the algorithm we described in the previous sections is prov-
ably -competitive.
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Theorem 4.1 No algorithm can be -competitive for
the problem where points arrive in adversarial order.

Proof: Suppose the points arrive along a number line, with
the th point at location . The facility cost will be one.
Consider what happens as the number of points grows to-
wards infinity. The offline optimum places one facility at
the closest point to zero, paying a cost of at most . On
the other hand, suppose the online algorithm opens its last
facility at point . The remaining points are each at least

from this facility, and as the number of them in-
creases the cost becomes large. Suppose our algorithm is
a -approximation. We cannot open more than facili-
ties. It follows that there is a “last” facility after which we
cannot open more even if more points arrive, and therefore
the algorithm is not in fact a -approximation.

The above proof depends upon the inability of the al-
gorithm to place facilities at points which have not yet ar-
rived. This constraint may appear artificial, in that the al-
gorithm might “predict” the convergence point of the se-
quence. However, since the metric space is arbitrary we
could maintain many different convergence points at all
times, always redirecting away from the point where a fa-
cility is opened. We will simply maintain legal con-
vergence points, redirecting away from each point at which
a facility is opened. The space will need to be exponentially
large but we assumed that the value of was to be indepen-
dent of both the size of the space and the number of demand
points. Again an lower bound on the competitive ratio
follows.

Since we cannot hope to provide a constant competitive
algorithm, we will instead allow the competitive ratio to de-
pend upon the number of points. Consider the algorithm for
the uniform case, where each time a point arrives we mea-
sure the distance to the nearest existing center and open
a new center with probability . We will show that this
algorithm is -competitive when the points arrive in
adversarial order.

Theorem 4.2 The algorithm of section 2 is an ap-
proximation.

Proof: Consider some optimum cluster . Let repre-
sent the set of points belonging to which are between

and from the optimum center . Consider
the sets through . These sets may be visualized as
concentric rings (with geometrically increasing radii) about
the optimum center. We observe that must be
empty, since otherwise the cost of points in this set would
exceed the cost of the entire cluster. Consider any one of the

. The expected cost which we pay for transporting these
points before we actually open a facility in the set is at most

. On the other hand, suppose we have opened a facility in
set . This point is at most from the optimum center.
Any subsequent point can be sent at most to
this center. Thus the expected cost for this subsequent point
is bounded by . Thus each of the sets

through pays at most an expected , then opens a
facility for cost , then sends points at most . Consider
the set of points within of the optimum center. These
pay an expected , then open a facility for cost . At this
point all the remaining points can be sent to this facility for
service cost . This is doubled due to the possibility
of opening a facility. The total cost for each point set before
a facility is opened is at most ; an additional

is paid to open the first facility in each set. The
total cost paid by points within each after the first facil-
ity opens may be bounded by , where the

comes from the possible factor six increase in cost due
to added distance and possible later facilities, and the
term comes from the in the service cost for the members
of . The total cost is thus bounded by
for an competitive algorithm.

The theorem can be shown to hold for the nonuniform
algorithm of section 3 as well, with appropriate constant-
factor increases in the competitive ratio.

5. Offline Facility Location in Linear Time

Consider applying the online algorithm to the offline
problem of facility location. We can shuffle the points into
random order in time. As each point “arrives”
we must compute its distance to the nearest currently open
facility (and to each potential facility in the nonuniform
case) and make a random decision. This process can be
performed in time in the worst case (for the uniform
setting, it will actually be where is the number of
facilities opened by the algorithm; however the algorithm
may open many more facilities than the optimum solution).
The total running time is thus bounded by and we
obtain a constant approximation. We note that while many
constant-approximation algorithms are known for the fa-
cility location problem (often obtaining smaller constants),
they require more than time to run. In fact, is
linear time because the input, a matrix of distances between
all pairs of points, is in size.

We consider the local search algorithm of Charikar and
Guha [2] which provides an approxima-
tion in time. It is implicit in the analy-
sis of [2] that the first time is spent attaining
a constant-approximation while the next is spent
in improving this constant to the stated bound. It follows
that we can take the output of our fast online algorithm and
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begin applying local search on the result. This approach re-
moves the factor from the running time, giving a

approximation in time.
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