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Online Algorithms: Standard Set-Up

Input is given piece-wise.

Output is committed irrevocably in response to and for each piece.

Some objective function must be optimized.

Examples: paging, bin covering & packing, scheduling, k-server, . . .

The competitive ratio is the most common quality measure.

For minimization problems, Alg is c-competitive if

∃α ∀I Alg(I ) ≤ c Opt(I ) + α

(
or, essentially, lim sup

|I |→∞

Alg(I )

Opt(I )
≤ c

)

Alg(I ) is the cost of processing the input sequence I .

Opt is an assumed optimal offline algorithm.

The competitive ratio is the infimum over such c .

Similar definitions for maximization problems (profit instead of cost).
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The Big Picture: The Nature of Online Algorithms

The standard set-up and competitive analysis works well for some problems;
poorly for others.

Problems are due to

strictness wrt. input/ouput requirements,

competitive analysis being a worst-case measure, and

a too powerful adversary and optimal algorithm.

Attempts to get better results (prediction of behavior in practice), include

introducing alternative measures,

modifying the definition of unrestricted, piece-wise input, and

modifying the output requirement of irrevocability.

“Alternative performance measures” and “input restrictions” have received
significant attention (limiting the power of the adversary).
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Performance Measures and Input Restriction (partial)
competitive ratio
[Graham, Bell, 1966] [Sleator & Tarjan, CACM, 1985]

[Karlin et al., Algorithmica, 1988]

online/online ratio
[Gyárfás & Lehel, Ars Combinatoria, 1990]

statistical adversary
[Raghavan, On-Line Algorithms, 1992]

loose competitive ratio
[Young, Algorithmica, 1994]

max/max ratio
[Ben-David & Borodin, Algorithmica, 1994]

access graphs – locality of reference
[Borodin et al., JCSS, 1995]

random order ratio
[Kenyon, SODA, 1996]

accommodating ratio
[Boyar & L., Algorithmica, 1999]

extra resource analysis
[Kalyanasundaram & Pruhs, JACM, 2000]

diffuse adversary
[Koutsoupias & Papadimitriou, SICOMP, 2000]

accommodating function
[Boyar, L. & Nielsen, SICOMP, 2001]

smoothed analysis
[Spielman & Teng, JACM, 2004]

working set – locality of reference
[Albers et al., JCSS, 2005]

relative worst order analysis
[Boyar & Favrholdt, TAlg, 2007]

[Boyar, Favrholdt & L., JCSS, 2007]

bijective and average analysis
[Angelopoulos et al., SODA, 2007]

relative interval analysis
[Dorrigiv et al., TCS, 2009]

advice complexity
[Dobrev et al., SOFSEM, 2008] [Emek el al., WAOA, 2009]

[Böckenhauer et al., ISAAC, 2009]

bijective ratio
[Angelopoulos et al., arXiv, 2016]

online-bounded analysis
[Boyar et al., JoS, in press]
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Systematic Studies

Most new measures and restrictions are driven by one problematic case, and
comparisons are made to competitive analysis only.

Adding techniques to the online algorithms toolbox

[Boyar, L. & Nielsen, SICOMP, 2001]
Systematic studies of input restrictions, defining generally-applicable, generalized
methods.

[Boyar, Irani & L., WADS, 2009, Boyar, Irani & L., Algorithmica, 2015]
Systematic studies of performance measures, comparing many measures on the
same problem.

[Boyar et al., WADS, 2017]
Systematic studies of relaxed irrevocability.
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Bin Packing variant: Dual

[Leung, thesis, 1977]; reported in [Bruno & Downey, Acta Informatica, 1985]

Parameters: n and k .

Integer-sized items.

n bins of size k ∈ N.

Objective: Pack as many items as possible.

Requirement: fairness, i.e., no rejection of items that fit.

Some algorithms are

FirstFit and WorstFit
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Bin Packing variant: Dual

FirstFit

WorstFit

Result: 8

Result: 7

Which algorithm would you choose?
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Bin Packing variant: Dual

On “real-life” input, FirstFit is consistently better.

Problem?
According to Competitive Analysis,

WorstFit is strictly better than FirstFit!

[Boyar, L. & Nielsen, SICOMP, 2001]
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Accommodating Function

– resource-based input restriction [Boyar, L. & Nielsen, SICOMP, 2001].

Assume we have some resource of size n.
Algn(I ) is the cost of running Alg on I with resources n.

I is an α-sequence if Optαn(I ) = Optn′(I ) for all n′ ≥ αn.

The value of the accommodating function for Alg at the point α is

the competitive ratio of Alg on α-sequences.
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Dual Bin Packing and Accommodating Function
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[Boyar, L. & Nielsen, SICOMP, 2001]

(Similar results for other bin packing, interval coloring, and other problems.)
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Bin Packing: The Torontonian’s Problem
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Bin Packing: The Torontonian’s Problem
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Bin Packing variant: Coloring

[Krumke et al., TCS, 2008]

Parameters: B and q.

Unit-sized, colored items.

Bins of size B ∈ N.

At most q non-empty non-full bins at any time.

Objective: Minimize the maximal number of different colors in any bin.

Some algorithms are

NextFit and GreedyFit
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Bin Packing variant: Coloring

B = 4, q = 3.

GreedyFit

Result: 2

NextFit

Result: 3

Which algorithm would you choose?
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Bin Packing variant: Coloring

Problem?

According to (strict) Competitive Analysis,

NextFit is strictly better than GreedyFit!

[Krumke et al., TCS, 2008]
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Relative Worst Order Analysis

[Boyar & Favrholdt, TAlg, 2007], [Boyar, Favrholdt & L., JCSS, 2007]

AW(I ): worst A(σ(I )) for any σ.

For algorithms A and B,

cl(A,B) = sup{c | ∃b : ∀I : AW(I ) ≥ c BW(I )− b}
cu(A,B) = inf {c | ∃b : ∀I : AW(I ) ≤ c BW(I ) + b}

The relative worst order ratio, WRA,B, of A to B:

cl(A,B) ≥ 1 ⇒ WRA,B = cu(A,B)
cu(A,B) ≤ 1 ⇒ WRA,B = cl(A,B)

Intuitively, WRA,B is the worst AW(I )
BW(I ) as I →∞.
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Bin Packing variant: Coloring

Theorem

WRNextFit,GreedyFit = min {q,B} (strict).

GreedyFit is always better (up to the stated factor). Additionally (selected),

For standard bin packing, Worst-Fit is better than Next-Fit.
[Boyar & Favrholdt, TAlg, 2007]

For dual bin packing, First-Fit is better than Worst-Fit.
[Boyar & Favrholdt, TAlg, 2007]

For paging, LRU is better than FWF and look-ahead helps.
[Boyar, Favrholdt & L., JCSS, 2007]

For scheduling, minimizing makespan on two related machines, a post-greedy
algorithm is better than scheduling all jobs on the fast machine.
[Epstein et al., J. Comb., 2006]

For proportional price seat reservation, First-Fit is better than Worst-Fit.
[Boyar & Medvedev, TAlg, 2008]
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General Techniques: Notable Omissions

Extra resource analysis [Kalyanasundaram & Pruhs, JACM, 2000].

Advice complexity – upcoming seminar. :)

A range of alternative performance measures:
max/max ratio [Ben-David & Borodin, Algorithmica, 1994]
random order ratio [Kenyon, SODA, 1996]
online/online ratio [Gyárfás & Lehel, Ars Combinatoria, 1990]
statistical adversary [Raghavan, On-Line Algorithms, 1992]
loose competitive ratio [Young, Algorithmica, 1994]
diffuse adversary [Koutsoupias & Papadimitriou, SICOMP, 2000]
smoothed analysis [Spielman & Teng, JACM, 2004]
bijective and average analysis [Angelopoulos et al., SODA, 2007]
relative interval analysis [Dorrigiv et al., TCS, 2009]
online-bounded analysis [Boyar et al., JoS, in press]

And more problem specific concepts such as look-ahead, fairness, and locality
of reference.
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Relaxing Irrevocability

Recall the following property of online algorithms:

Output is committed irrevocably in response to and for each piece.

So, why study relaxed irrevocability?

Application-wise, this is often of interest:

Problems are not always symmetric, and some decisions may be less
irrevocable than others. . .

Theoretically of a different flavor than the majority of approaches:

Extra power to the online algorithm; not limiting the power of the adversary.

We also want to understand this aspect:

We add a bit to the understanding of online algorithms.
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Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Choice of Scene: Online Graph Problems

Model Details

Vertex arrival model
vertices arrive online with edges incident to earlier vertices.

Edge arrival model
edges arrive with their incident vertices
(when natural; similar results in the vertex arrival model)

Choice of graph problems: Set construction, i.e., accept/reject decisions.

Example: Vertex Cover in the Vertex Arrival model

Kim S. Larsen (University of Southern Denmark) Online Algorithms: General Techniques Toronto, September, 2017 22 / 41



Simple Relaxed Irrevocability Models

To preserve the “online” nature, revocability must be limited:

If decisions are accept/reject, then revoking a decision can be

Late Reject – rejecting an earlier accepted vertex.

Late Accept – accepting an earlier rejected vertex.

We study both separately and also the combination,

Late Accept/Reject – late rejects are irrevocable.

Recall: The input sequence is unknown – we must have a solution at all times.
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Related Work

Late Reject has been studied under the names “removable” or “preemption”1 for

Knapsack
[Iwama & Taketomi, ICALP, 2002] [Han et al., TCS, 2014]
[Han et al., TCS, 2014] [Cygan et al., ToCoSy, 2016] [Han & Makino, TCS, 2016]

Call Control
[Bartal et al., STOC, 1996] [Garay et al., JAlg, 1997]

Maximum Coverage
[Saha & Getoor, SDM, 2009] [Rawitz & Rosén, ESA, 2016]

Weighted Matching
[Epstein et al., JDM, 2011] [Epstein et al., STACS, 2013]

Example The red rule for MST [Tarjan, Book, 1983] can be used as late reject.

1Not as in scheduling, where it usually means “postpone”.
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Related Work

“Solution modification at a cost” (multi-criteria optimization):

Vertex Cover
[Demange & Paschos, TCS, 2005]

Steiner Trees
[Imase & Waxman, JDM, 1991] [Gupta & Kumar, SODA, 2014]
[Gu et al., SICOMP, 2016]

MST/TSP
[Megow et al., SICOMP, 2016] [Jaillet & Lu, Networks, 2014]
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Results for the Four Graph Problems

Problem Standard Late Accept Late Reject Late Accept/Reject

Independent Set n − 1 n
Θ(1)

⌈
n
2

⌉
3
√

3
2 ≈2.598

Matching 2 2 2 3
2

Vertex Cover n − 1 2 n −Θ(1) 2

Spanning Forest W W 1 1

n = |V | in the graph G = (V ,E )

W is the ratio of the maximum to the minimum edge weight

All results are tight (matching upper/lower bounds).

Some summarize known/easy results reformulated in these models.

The technical highlights are the upper and lower bound proofs of 3
√

3
2 .
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Vertex Cover

The Classic 2-Approximation Algorithm Based on Matching
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Vertex Cover

Simulate Online with Late Accept
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Vertex Cover

Lower Bound

Theorem
For Vertex Cover, in the Late Accept model, the competitive ratio is 2.
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Independent Set

Compute an independent set of maximum cardinality.
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Independent Set: Upper Bound

T is a candidate set if T is an independent set, T contains no late-rejected
vertices or vertices in S , and |T | ≥

√
3 |N(T ) ∩ S |.

Algorithm: Independent Set in the Late Accept/Reject model.

Result: Independent set S

S = ∅
while a vertex v is presented do

if S ∪ {v} is independent then
S = S ∪ {v}

else
while there exists a candidate set do

Let T be a candidate set minimizing |S ∩ N(T )|
S = S \ N(T ) ∪ T

The basic algorithmic idea is known, but “rules” and parameters vary.
[Saha & Getoor, SDM, 2009] [Rawitz & Rosén, ESA, 2016]
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.

Partition V into S , LateRejected, TheRest.

1 |TheRest ∩Opt | < 2 |S \Opt |
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.

Partition V into S , LateRejected, TheRest.

1 |TheRest ∩Opt | < 2 |S \Opt |
At termination, why is TheRest ∩Opt not a candidate set? It’s clearly

independent, and

another partition than S or late rejects.

Thus, |TheRest ∩Opt | < 2 |N(TheRest ∩Opt) ∩ S |.

Since Opt is an independent set,

N(TheRest ∩Opt) ∩ S = N(TheRest ∩Opt) ∩ (S \Opt) ⊆ S \Opt.
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.

Partition V into S , LateRejected, TheRest.

1 |TheRest ∩Opt | < 2 |S \Opt |
2 |Sexchange| ≥ |LateRejected|
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.

Partition V into S , LateRejected, TheRest.

1 |TheRest ∩Opt | < 2 |S \Opt |
2 |Sexchange| ≥ |LateRejected|

We add twice as much to Sexchange as we remove from S and therefore add to
LateRejected.
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.
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Independent Set: A Simpler Upper Bound

Say we exchange only if |T | ≥ 2 |N(T ) ∩ S |.

Partition V into S , LateRejected, TheRest.

1 |TheRest ∩Opt | < 2 |S \Opt |
2 |Sexchange| ≥ |LateRejected|

Now,

|Opt | = |S ∩Opt |+ |LateRejected ∩Opt |+ |TheRest ∩Opt |
< |S ∩Opt |+ |LateRejected|+ 2 |S \Opt |
≤ |S ∩Opt |+ |Sexchange|+ 2 |S \Opt |
≤ 3|S |
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Independent Set: Lower Bound

1

2

3 7

8

9

10

4

5

6 11

12

13

We give vertices in bags.

The algorithm can only hold vertices from one bag
(edges to all earlier not late-rejected vertices).

Opt can hold vertices from every second bag on
some (long enough) path.

Some pages of calculations are required to sum it
all up without loosing any terms.
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Independent Set

Compute an independent set of maximum cardinality.

Theorem

For Independent Set, in the Late Accept/Reject model, the competitive ratio

is 3
√

3
2 .
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Concluding Remarks Regarding Irrevocability

Is it unfortunate rejects or accepts that are the problem?

Are there different patterns for minimization and maximization problems?

Are there other patterns, depending on more problem-specific characteristics?

Future Work

Investigate other (related) problems in this set-up and draw conclusions.

Consider trade-off results between late operations and solution quality
(considering late actions a resource).
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Thank you for your attention!
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