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Week 9

Announcements:

1 One more standard type of assignment. I have so far posted 2
questions. The assignment will be due April 4.

2 A critical review of a topic. Please send me your proposal for a topic
(perhaps with some relevant papers to help clarify the topic) as soon
as possible. The critical review should indicate the state of the topic,
what is known and what outstanding issues remain, what are the
most relevant papers, what algorithms, proof techniques, algorithms
are particularly novel or what is relatively standard.

I would suggest a 5-10 page review but that is just a rough guideline.
The written review and a 10-15 minute oral presentation is due April
4.
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Todays agenda

Todays agenda
The lecture slides will be sketchy as I want to mention a number of topics.
In addition to any posted slides, chapters 7 and 8 are being written now
and you will find related material there.

Complete the discussion of the two sided greedy algorithm for the
unconstrained submodular maximization (USM) problem. The
relation between the USM proof and the presentation in Poloczek et
al randomized algorithm for max-sat.

Discuss proof(s) of the KVV algorithm for bipartite matching.

Brief introduction to primal dual algorithms and primal dual based
analysis of combinatorial algorithms.

Extensions of bipartite matching following Chris’s lecture last week.

ROM and iid input models

Other computational models where randomization is provably
necessary.
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A comment on the focus of this course

Note: To give some focus to this course, I am emphasizing conceptually
simple algorithms (eg greedy and online) and the role of randomization in
algorithms. Online algorithms (and other algorithmic models) provide a
setting where we can establish proofs (without complexity assumptions) of
the power of randomization. We will also consider, streaming algorithms,
sublinear time algorithms and random walk algorithms.
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In the lecture for Week 7, we stated both the deterministic and
randomized algorithms for the USM problem. We also sketched the proof
for the deterministic 1

3 bound.
For convenience we repeat these algorithms which I refer to as the
deterministic and randomized double-sided greedy algorithms for the USM
problem.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi

then Xi := Xi−1 ∪ {ui};Yi := Yi−1
else Xi := Xi−1;Yi := Yi−1 \ {ui}

End If
End For
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The randomized double-sided algorithm for the
USM problem

The randomized 1/2 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)

a′i = max{ai , 0}; b′i = max{bi , 0}
If ai = bi = 0

then Set Xi := Xi−1 ∪ {ui};Yi := Yi−1
Else
With probability a′

a′+b′

Set Xi := Xi−1 ∪ {ui};Yi := Yi−1
With probability b′

a′+b′

Set Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For
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Outline of the randomized 1
2 bound

We had the following key lemma for the deterministic case:

f (OPTi−1 − f (OPTi ) ≤ [f (Xi − f (Xi−1] + [f (Yi )− f (Yi−1]

The proof of the 1
3 bound then follows from this key lemma by a standard

telescoping argument.

For the randomized algorithm, we again have OPTi ,Xi ,Yi which are now,
of course, random variables. We then have the following key lemma for
the randomized double-sided greedy algorithm:

E[f (OPTi−1)− f (OPTi )] ≤ 1

2
E[f (Xi )− f (Xi−1)] + [f (Yi )− f (Yi−1)]

And as before, a standard telescoping argument establishes the 1
2 bound.
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The correspondence between the randomized
max-sat and USM algorithms

It is no coincidence that there is a strong correspondence between the
proof of the randomized 3

4 bound for max-sat and the 1
2 bound for the

USM problem. As we noted, the Buchbinder et al USM algorithm can be
extended to provide a max-sat algorithm which can be seen to be
equivalent to an algorithm independently given by van Zuylen as discussed
in Poloczek et al whose analyis we follow.

This hold for the high level structure of the proofs based on the key
lemmas to bound E[f (OPTi−1)− f (OPTi )] and then using a telescoping
argument. Moreover, these key lemmas also follow a similar sequence of
supporting lemmas.
In particular, we have fi + ti ≥ 0 correspnding to a′ + b′ ≥ 0 and
E[w(OPTi−1 − w(OPTi )] ≤ max{0, 2fi ti

fi+ti
} corresponding to

E[w(OPTi−1 − w(OPTi )] ≤ max{0, a′ib
′
i

a′i+b′i
}

Note: We will soon indicate this correspondence in chapter 8 of the text.
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The KVV algorithm

Chris stated the KVV Ranking algorithm for the unweighted bipartite
matching problem (BMM). The Karp, Vazirani and Vazirani paper is a
seminal paper that has led to many extentions relating to online
advertising (e.g. the ADWORDS problem).

The KVV algorithm is at first sight (if not, always) surprising in that the
more natural randomized online greedy algorithm (i.e., match each online
node to a random available offline node) has a tight asymptotic 1

2
competitive ratio.

The Ranking algorithm instead initally chooses a random permutation of
the offline nodes so as to provide a ranking for choosing a matching node.

Given its importance (and because there was a techincal error in the
original proof), there have been a number of alternative proofs. In Chapter
8 of the text we are writing, there is a combinatiorial proof due to
Birnbaum and Mathieu. A number of alternative proofs rely on primal
dual analysis.
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The Ranking algorithm

The Ranking algorithm

V is the set of offline nodes and U is the set of online nodes.
Choose a permutation (ranking) σ on V uniformly at random
M := ∅
i := 1
While i ≤ n do

Online node ui arrives together with its neighbourood N(ui )
Let Nc(ui ) be the nodes in N(ui ) that are not yet matched.
If Nc(ui ) 6= ∅ then

Let v = argmin{σ(u) : v ∈ Nc(ui )}
M := M ∪ {ui , v)} i := i + 1

End While

We will sketch a proof in our text that KVV acheives competitve ratio
1− 1

e using the proof in Birnbaum and Mathieu.
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Sketch of KVV competitive bound

Let pt denote the probability over σ that the vertex of rank t in V is
matched by Ranking. We are interested in computing the expected size of
the matching returned by Ranking, which is given by

∑n
t=1 pt . The

analysis of Ranking will be centered around establishing the following
lemma:
Lemma:
For all t ∈ [n] we have 1− pt ≤ (1/n)

∑t
s=1 ps .

From the lemma, the following inequalities can be derived:

n∑
t=1

pt = p1 +
n∑

t=2

pt ≥
1

n
+

(
1− 1

n

) n∑
t=1

(
n

n + 1

)t−1
≥ 1

n
+

(
1− 1

n

) 1−
(

n
n+1

)n
1−

(
n

n+1

)
=

1

n
+

(
n − 1

n

)[
1−

(
n

n + 1

)n]
≥ n

[
1−

(
1− 1

n + 1

)n]
,
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Completing the proof sketch of the KVV
competitive bound

To prove (and motivate) the lemma, we proceed as follows:
Let At denote the set of permutations such that a vertex of rank t is
matched by Ranking. Let S[n] denote the set of all permutations V → V
and define Bt = S[n] \At ; that is, Bt is the set of permutations such that a
vertex of rank t is not matched by Ranking.

We then construct an injection of the form [n]× Bt →
⋃t

i=1 Ai . This will
prove the lemma.
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Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:
I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:
I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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An example: set cover

As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj xj ≥ 1 for all i ; that is, ei ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem. 14 / 39



Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fitting analysis.

In what follows we will initially assume the primal is a minimization
problem to simplify the exposition.
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Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound. 16 / 39



Motivating duality

Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual (with solution
(y1, y2) = (2, 1) must be 26.
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Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤
∑m

j=1(
∑n

i=1 Ajixi )yj
≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x
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Max flow-min Cut in terms of duality

While the max flow problem can be naturally formulated as a LP, the
natural formulation for min cut is as an IP. However, for this IP, it
can be shown that the extreme point solutions (i.e. the vertices of the
polyhedron defined by the constraints) are all integral {0,1} in each
coordinate. Moreover, there is a precise sense in which max flow and
min cut can be viewed as dual problems. This is described nicely in
Vazarani (section 12.2).
In order to formulate max flow in standard LP form we reformulate
the problem so that all flows (i.e. the LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows)
we add an edge of infinite capacity from the terminal t to the source
s and hence define a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E 19 / 39



Max flow-min cut duality continued

For the primal edge capacity constraints, introduce dual (“distance”)
variables di ,j and for the vertex flow conservation constraints, introduce
dual (“potential”) variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i )}
be an intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1; p∗t = 0.
The IP optimum then defines a cut (S ,T ) with S = {i |p∗i = 1} and
T = {i |p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first
constraint forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut. 20 / 39



Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.
Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.
As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.
We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.
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Primal dual for f -frequency set cover continued

Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem. 22 / 39



Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .
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Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm

We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .
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The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).
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Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei ) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei )/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.
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More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.
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Dual fitting applied to a maximization problem

Krysta [2005] applies dual fitting approach to a maximization problem,
namely to analyze (in my terminology) fixed order prioriity algorithms
(such as the Lehman et al [1999] greedy 2

√
m approximate set packing

algorithm) for generalizations of the weighted set packing problem (which
can be used to formulate many natural integer packing problems).

Generalized Set Packing

As in weighted set packing, we have a collection of sets S ∈ S over some
universe U. Each set has a weight wS . Now we allow sets to be multi-sets
and let q(u,S) to be the number of copies of u ∈ S . Furthermore, we also
allow each element u ∈ U to have some maximum number bu of copies
that can occur in a feasible solution (in contrast to the basic set packing
problem where bu = 1 for all u ∈ U).
The goal is to select a subcollection C of sets satisfying the feasibility
constraints on the {bu} so as to maximize the sum of the weights of the
sets in C.
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The natural IP and LP relaxation

The natural IP/LP

max
∑

S∈S wSxS

subject to
∑

S :u∈S q(u,S)xS ≤ bu ∀u ∈ U

xS ∈ {0, 1}
In the LP relaxation, the {0,1} constraint becomes 0 ≤ xS ≤ 1}
NOTE: Unlike set cover, for set packing the condition xS ≤ 1 is necessary

The minimization dual

min
∑

u∈U buyu +
∑

S∈S zS

subject to zS +
∑

u∈S q(u, S)yu ≥ wS ∀S ∈ S
zS , yu ≥ 0

NOTE: The dual variable zS corresponds to the constraint xS ≤ 1
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The secretary problem as an LP

We recall the classical secrtary problem (defined in Lecture 2) which is to
maximize the probability of choosing the best candidate from N candidates
that arrive in random order. Bucnbinder, Kain and Singh [2010] show how
to view the classical secretary problem (and many generalization) as an LP
maximization problem with the following benefits:

1 Finding an optimal mechanism reduces to solving a specific linear
program

2 Proving that 1
e is the best bound possible reduces to finding a

solution to the dual of the LP.

3 This approach facilitates the analysis of many generalizations of the
secretary problem (i.e. by adding additional constraints or modifying
the objective function).

4 One of the generalizations is to obtain a truthful mechanism whereby
agents (i.e. candidates) have no incentive to seek a particular place in
the ordering (and hence making a random order more meaningful).
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The LP for the classical secretary problem

The primal LP P

max 1
n

∑N
i=1 i · pi

subject to: i · pi ≤ 1−
∑i−1

j=1 pj 1 ≤ i ≤ N

pi ≥ 0

The dual LP D
min

∑N
i xi

subject to:
∑N

j=i+1 xj + i · xi ≥ i
N 1 ≤ i ≤ N

xi ≥ 0
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Sketch of LP characterization

To prove that this LP captures the secrtary problem one needs to prove:

If M is any mechanism and pMi is the probability that M selects the
candidate in position i . Then {pMi } is a feasible solution for the primal
P and Prob[M selects best candidate] ≤ the objective value of P
Let {pi} be any feasible solution of P. Then the following mechanism
M obtains the objective function of P:
Select candidate i with probability i ·pi

(1−
∑

j<i pj )
if the first i − 1

candidates have not been selected and i is best so far.

Furthermore, to prove an upper bound (namely 1
e + o(1)) on the best

performance (i.e. best probability), it suffices to construct a feasible
solution {xi} for the dual D with dual objective value 1

e .

Setting xi = 0 for 1 ≤ i ≤ N/e and xi = 1
N (1−

∑N
j=i

1
j ) for

n/e < i ≤ N is a feasible dual solution with value 1
e .
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More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.
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Primal dual analysis for the Ranking algorithm

A number of papers use primal dual analysis for BMM and related
problems.
Warning: Although I prefer to use U (or R for right side) for the online
vertices and V (or L) for the offline vertices, this is not standard and
various papers reverse the role of U and V (R and L). In what follows, I
will use L (for left) for the offline nodes and R (right) for the online nodes.
Here is the standard primal IP for matching in an arbitrary graph
G = (V ,E ):

Maximize
∑

(i ,j)∈E xij
subject to

∑
j :(i ,j)∈E xij ≤ 1 ∀i ∈ V

xij ∈ {0, 1} ∀(i , j) ∈ E
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The LP relaxation and its dual

Primal LP
Maximize

∑
(i ,j)∈E xij

subject to
∑

j :(i ,j)∈E xij ≤ 1 ∀i ∈ V

xij ≥ 0 ∀(i , j) ∈ E

Dual LP stated for a bipartite graph
Minimize

∑
i∈L αi +

∑
j∈R βj

subject to αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j
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Sketch of this primal dual proof of the KVV
algorithm

This is the proof in Devanur, Jain and R. Kleinberg

First we need to slightly restate the KVV algorithm as follows so that
rather choose a random permutation of the offline nodes, we choose a
random Yi ∈ [0, 1] for each offline node i ∈ L. Then in matching an online
vertex we choose the available offline node (if any exists) have the smallest
value Yi . (This type of restatement is the extension to offline vertex
weighted online matching.)
In order to establish a c competitive ratio, it will suffice to find a dual
soution D such that P ≥ c · D where P is the primal solution. We note
that P and D will be random variables but that the inequality P ≥ c · D
will hold for every instantaition of the algorithm.

We also need to relate the algorithm to the dual variables.

It is also hel;pful that we know the ratio c that we are aiming for, namely
c = 1− 1

e .
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Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve the same 1-1/e bound for this class of vertex weighted
bipartite matching.
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The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e1−x

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv ). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.
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Moving away from the adversarial approach

While competitive online analysis was initially motivated by arguing for
worst case (i.e., adversarial inputs) analysis (as in Sleator and Tarjan’s
seminal article regarding online list accessing and paging), the interest in
bipartite matching (and extensions) might arguably be said to have led to
a renaissance in the study of online algorithms in distributional models.

In particular, the most studied distributional input setting is the i.i.d.
setting which has been prominent in various BMM problem extensions
(e.g. ADWORDS) and also in the more basic BMM problem. In particular,
starting with a 2009 paper by Feldman et al, there has been a succession
of papers showing algorithms that beat the ratio 1− 1/e in the known and
unknown i.i.d. settings.

Another well studied distributional setting is the random order model
(ROM) setting.
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