
CSC2420: Algorithm Design, Analysis and Theory
Spring 2019

Allan Borodin

February 14, 2019

1 / 1

Week 6

Announcements:

Assignment 1 is now complete and the due date February 25 which is
the last date to drop a graduate course without penalty. Note: I will
add what I think is an easier alternative to question 5 and awarding a
bonus to anyone who solves both problems concerning matroids.
Class next week or not?

Todays agenda

Finish up discussion of oblivious local search 1
2 approximation for

maximizing a montone submodular function subject to a matroid
constraint.
Idea for obtaining a 1− 1

e approximation for maximizing a montone
submodular function subject to an arbitrary matroid constraint. The
weighted max coverage function.
Introduction to randomized algorithms with applications to max-sat,
unconstrained non-monotone submoodular maximization, online
bipartite maximization.

2 / 1

Where we ended on February 7

The lecture on Thursday, Frebruary 7 basically ended with the
statement of the standard greedy algorithm for maximizing a
monotone submodular subject to a cardinality constraint. This
algorithm provides a 1− 1

e -approximation for a cardinality constraint.
I added some additional slides for the purpose of the assignment.
We will continue this week with a sketch of the proof of this
approximation bound.

3 / 1

Generalizing to a matroid constraint

Nemhauser Wolsey and Fisher [1978] showed that the 1− 1
e

approximation is optimal in the sense that an exponential number of
value oracle queries would be needed to beat the bound for the
cardinalily constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a 1-exchange local search algorithm (that will follow)
achieve a 1

2 approximation for maximzing a monotone submodular
function subject to an arbitrary matroid constraint.

They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.

4 / 1

Monotone submodular maximization subject to a
matroid constraint

We need some additional facts about matroids and submodular functions.

Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two different bases of the
same matroid). Then there is a bijection π between O \ S and S \ O
such that for all x ∈ O, (S \ {π(x)}) ∪ x is independent.
We have the following facts for a submodular function f on a ground
set U:

1 Let C = {c1, . . . , c`} ⊆ U \ S . Then

∑̀
i=1

[f (S + ci)− f (S)] ≥ f (S ∪ C)− f (S)

2 Let {t1, . . . , t`} be elements of S . Then

∑̀
i=1

[f (S)− f (S \ {ti}] ≤ f (S)

5 / 1

The 1-exchange local search algorithm

We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x /∈ S such that
(S \ {π(x)}) ∪ {x} > f (S). Here π is the bijection as in Brualdi’s result.

The previous local seach algorithm provides a 1
2 -approximation for

maximizing a monotone submodular function.
Now let S be a local optimum and O an optimal solution. By local
optimality, for all x ∈ O \ S , we have

f (S) ≥ f ((S \ {π(x)}) ∪ {x})
Subtracting (S \ {π(x)}) from both sides, we have

f (S)− (S \ {π(x)}) ≥ f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)})
From submodularity,

f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)}) ≥ f (S ∪ {x})− f (S)

Thus for all x ∈ O \ S
f ((S \ {π(x)} ≥ f (S ∪ {x})− f (S)

6 / 1

Completing the local search approximation

Summing over all such x yields∑
x∈O\S [f (S)− f (S \ {π(x)})] ≥

∑
x∈O\S [f (S ∪ {x})− f (S)]

Applying the first fact on slide 28 to the right hand side of this inequality
and the second fact to the left hand side, we get

f (S) ≥ f (S ∪ (O \ S))− f (S) = f (O ∪ S)− f (S) ≥ f (O)− f (S)

which gives the desired 1
2 -approximation.

7 / 1

Achieving the 1− 1
e approximation for arbitrary

matroids

An open problem for 30 years was to see if the 1− 1
e approximation

for the cardinality constraint could be obtained for arbitrary matroids.

Calinsecu et al [2007, 2011] positively answer this open problem using
a very different (than anything in our course) algorithm consisting of
a continuous greedy algorithm phase followed by a pipage rounding
phase.

Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide their development) a sophisticated
non-oblivious local search algorithm that is also able to match the
1− 1

e bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.

8 / 1

Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E , a weight function w : E → <≥0 and a collection of
of subsets F = {F1, . . . ,Fn} of E . The goal is to find a subset of indices S
so as to maximize f (S) = w(∪i∈SFi) subject to some constraint (often a
cardinality or matroid constraint). Note: f is a monotone submodular
function.

For ` < r = rank(M), the `-flip oblivious local search for max
coverage has locality gap r−1

2r−`−1 →
1
2 as r increases. (Recall that

greedy achieves 1
2 .)

9 / 1

The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask (as we did for exact Max-k-Sat and the WMIS problem
for a k + 1 claw-free grpah), when is one solution better than the
other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u,S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1− 1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .

These α factors give more weight to those elements that appear
frequently which makes it easier to swap out a set S and still keep
many elements u ∈ S in the collection.

10 / 1

The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask (as we did for exact Max-k-Sat and the WMIS problem
for a k + 1 claw-free grpah), when is one solution better than the
other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u, S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1− 1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .

These α factors give more weight to those elements that appear
frequently which makes it easier to swap out a set S and still keep
many elements u ∈ S in the collection.

10 / 1

The very high level idea and the locality gap

The high-level idea behind the derivation is like the factor revealing
LP idea used by Jain et al [2003]; namely, Filmus and Ward formulate
an LP for an instance of rank r that determines the best obtainable
ratio (by this approach) and the {αi} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1− 1
e − ε) and

runs in time O(ε−1r2|F||U| log r)
The ε in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U|2 log r).

11 / 1

A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each Fi . For a general monotone submodular
function we no longer have these weights.
Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.
A weight is given to the average value of all solutions obtained from a
solution S by deleting i elements and this corresponds roughly to the
extra weight given to elements covered i + 1 times in the max
coverage case.

Letting β
(|S|)
k be the weight given to the average value of f (T) over

all subsets T of size k , the potential function is :

g(S) =
∑|S|

k=0

∑
T :T⊆S ,|T |=k

β
(|S|)
k

(|S|k)
f (T) =

∑|S |
k=0 β

(|S|)
k ET [f (T)]

12 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms, so far variants of
greedy and local-search.. Randomization is not per se an algorithmic
paradigm (in the same sense as greedy algorithms, DP, local search, LP
rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.

13 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms, so far variants of
greedy and local-search.. Randomization is not per se an algorithmic
paradigm (in the same sense as greedy algorithms, DP, local search, LP
rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.

13 / 1

The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be efficiently derandomized, there is
often conceptual insight to be gained from the initial randomized
algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms (in an offline setting)
is that the probability of success can be amplified by repeated
independent trials of the algorithm.

14 / 1

Some applications of randomized algorthms to the
online setting

In addition to the important role of randomiztion in the more standard
offline algorithm setting, randomization plays a very central role in online
algorithms as the online setting is particularly vulnerable to worst case
adversarial examples. Here are some problems we will consider in the
online setting:

1 Naive exact max-k-sat algorithm
2 De-randomization by the method of conditional expectation
3 The KVV algorithm for online unweighted bipartite matching
4 The Buchbinder et al two sided online greedy algorithm for the

unconstrined maximization of a non-monotone submodular function.
and application to max-sat.

5 Online with advice and relation to randomized online algorithms
6 De-randomization using two and multi pass algorithms

In addition we will consider some “classical” online problems which
continue to be studied.
But first a few more comments on randomization and complexty theory.

15 / 1

Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

We will see that often a naive randomization provides the best current
results. One can think of naive randomization as a paradigm. That is,
instead of looking for a particular solution, try a random solution.

16 / 1

Polynomial identity testing

The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.

Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

17 / 1

Schwartz-Zipple Lemma

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact that a
univariate polynomial of degree d can have at most d zeros.

18 / 1

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm, the
determinant can be computed in O(n2.373) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

19 / 1

The naive randomized algorithm for exact
Max-k-Sat

We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Note: For the following maximization problems, we will follow the
prevailing convention by stating competitive ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
As already noted, since exact Max-k-Sat generalizes the exact k- SAT
decision problem, it is clearly an NP hard problem for k ≥ 3. It is
interesting to note that while 2-SAT is polynomial time computable,
Max-2-Sat is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability. 20 / 1

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

21 / 1

Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?

22 / 1

(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved by the use of

semi-definite programming (SDP) and randomized rounding.

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?

23 / 1

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
24 / 1

Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true. Otherwise use F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ y .

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.
Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.

25 / 1

Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is an example of the random order model
(ROM), a randomized variant of online algorithms.
To precisely model the Max-Sat problem within an online or priority
framework, we need to specify the input model.
In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

Model 0 Each propositional variable x is represented by the names of the
positive and negative clauses in which it appears.

Model 1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively.

Model 2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

Model 3 The variable x is represented by a complete specification of each clause
it which it appears.

The naive randomized algorithm can be implemented in a “model 0”
where we don’t even specify the lenths of the clauses and Johnson’s
algorithm can be implemented using input model 1.

26 / 1

Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnsons algorithm in the ROM model is at
most 2

√
157 ≈ .746 < 3/4 , noting that 3

4 is the ratio first obtained
by Yannakakis’ IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.

27 / 1

A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.

The Slack algorithm is a randomized online algorithm (i.e. adversary
chooses the ordering) where the variables are represented within input
Model 1.

This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is input model 0.

Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within input
model 2. This provides a sense in which to claim the that Poloczek
and Schnitger Slack algorithm “cannot be derandomized”.

The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.

28 / 1

Revisiting the “cannot be derandomized comment”

Spoiler alert: we will be discussing how algorithms that cannot be
derandomized in one sense can be deramdomized in another sense.

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic algorithm by a result
of Huang and Borodin [2014].

However, Buchbinder and Feldman [2016] show how to derandomize
the Buchbinder et al algorithm into an algorithm that generates 2n
parallel streams where each stream is an online algorithn.

The Buchbinder et al USM algorithm is the basis for a randomized
3/4 approximation online MaxSat (even Submodular Max Sat)
algorithm.

Pena and Borodin show how to derandomize this 3/4 approximation
algorithm following the approach of Buchbinder and Feldman.

Poloczek et al [2017] de-randomize an equivalent Max-Sat algorithm
using a 2-pass online algorithm.

29 / 1

