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Week 5

Announcements:

Assignment 1 is now complete and the due date has been set to
February 25 which is the last date to drop a graduate course without
penalty.

Todays agenda

Briefly mention reverse or backward greedy algorithms.

Local search

Exact-Max-k-Sat; oblivious and non-onlvious local search

Oblivious and non-oblivious local search for WMIS wrt. k + 1
claw-free graphs.

Matroids

Submodular functions

Greedy and local search for maximizing linear and monotone
submodular functions subject to a matroid and other independence
constraints.
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Local search: the “other” conceptually simplest
paradigm

Along with greedy and greedy-like algorithms, local search is (for me) one
of the two conceptually simplest search/optimization paradigms. Like
greedy algorithms, there are many variations of this paradigm.

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S ′

in the “local neighbourhood” Nbhd(S)
S := S ′

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum.
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Local search as a well defined algorithm

To make local search a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?

2 What constitutes a reasonable definition of a local neighbourhood?

3 What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific.
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Towards a more precise definition for local search

We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any efficiently computed solution.
We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some “small” k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 We can view Ford Fulkerson flow algorithms as local search algorithms
where the (possibly exponential size but efficiently search-able)
neighbourhood of a flow solution S are flows obtained by adding an
augmenting path flow.
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What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search. I think it
should be called greedy local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.
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Exact Max-k-Sat

Given: An exact k-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i . . . ∨ `ki ) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .

In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

It is NP hard to achieve an approximation better than 7
8 for exact

Max-3-Sat and hence that hard for the non exact version of
Max-k-Sat for k ≥ 3.

Max-2-Sat can be approximated to within a factor ≈ .87856.
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The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment τ
WHILE there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ)

τ := τ̂
END WHILE
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How good is this oblivious local search algorithm?

Note: Following the standard convention for Max-Sat, I am using
approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3 .

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment τ such that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses,

and we say that the “totality ratio” is at least 2
3 .

More generally for Exact Max-k-Sat the ratio is k
k+1 .

This ratio is essentially a tight ratio for any d = o(n).

This is in contrast to an online greedy algorithm derived from a naive
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm
and then apply local search. 9 / 42



Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let

I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si ) be the corresponding weight.
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Analysis of obvlivious Exact-Max-2-Sat local search
continued

We will say that a clause involves a variable xj if either
xj or x̄j occurs in the clause. Then for each j , let

Aj be those clauses in S0 involving the variable xj .

Bj be those clauses C in S1 involving the variable xj
such that it is the literal xj or x̄j that is satisfied in C
by τ .

Cj be those clauses in S2 involving the variable xj .

Let W (Aj),W (Bj),W (Cj) be the corresponding weights.
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Analysis of the oblivious local search (continued)

Summing over all variables xj , we get

2W (S0) =
∑

j W (Aj) noting that each clause in S0 gets counted
twice.

W (S1) =
∑

j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.
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Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)
W (S0)+W (S1)+W (S2)

≤ W (S0)
3W (S0)+W (S2)

≤ W (S0)
3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, we have to worry about the number of
iterations. And here we can speed up the termination by insisting that
any improvement has to be sufficiently better.
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Using the proof to improve the algorithm

Aside: Using adversarial examples and viewing algorithms as a game
against an advesray is an idea that is now vefy active in “adversarial
learning”.

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .
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The non-oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
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Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Renaming variables, we can assume that τ is the all true assignment.

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:
.1in
−1

2P2,j − 3
2P1,j + 1

2N1,j + 3
2N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain
3W (S0) ≤W (S1) + W (S2)
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Some experimental results concerning Max-Sat

Of course, one wonders whether or not a worse case approximation
will actually have a benefit in “practice”.
“In practice”, local search becomes more of a “heuristic” where one
uses various approaches to escape (in a principled way) local optima
and then continuing the local search procedure. Perhaps the two most
commonly used versions are Tabu Search and Simulated Annealing.
Later, we will also discuss methods based on online algorithm and
“random walks” and other randomized methods (and their
derandomizations). .
We view these algorithmic ideas as starting points.
But for what it is worth, here are some 2010 experimental results
both for artifically constructed instances and well as for one of the
many benchmark test sets for Max-Sat.
Recent experimental results by Poloczek and Willamson show that
various ways to use greedy and local search algorithms can compete
(wrt. various test sets) with “state of the art” simulated annealing
algorithms and walk-sat algorithms while using much less time.
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Experiment for unweighted Max-3-Sat

50 250 450 650 850 1050
0

0.005

0.01

0.015

0.02

0.025

Number of variables

U
n

s
a

t 
ra

ti
o

 

 

OLS

NOLS

TS

NOLS+TS

SA

MWS

Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin]
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Experiment for Benchmark Max-Sat

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.
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More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson 2017

Note: 2Pass is a deterministic “2-pass online algorithm” that is derived
from a randomized online algorithm that we will discuss soon.
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Oblivious and non-oblivious local search for k + 1
claw free graphs

We again consider the weighted max (independent) vertex set in a
k + 1 claw free graph. (Recall the argument generalizing the
approximation ratio for the k set packing problem.)

The standard greedy algorithm and the 1-swap oblivious local search
both achieve a 1

k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .
NOTE: We will continue to use fractional approximation ratios for
the maximization problems being considered this week.

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 2

k+1 approximation.
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Berman’s [2000] non-oblivious local search

For the weighted MIS, the “`-swap” oblivous local search results
(essentially) in an 1

k locality gap for any constant `.

Chandra and Halldóssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to 3

2k .

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
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The (metric) facility location and k-median problems

Two extensively studied problems in operations research and CS
algorithm design are the related uncapacitated facility location
problem (UFL) and the k-median problem. In what follows we restrict
attention to the (usual) metric case of these problems defined as
follows:

Definition of UFL

Input: (F ,C , d , f ) where F is a set of faciltites, C is a set of clients or
cities, d is a metric distance function over F ∪ C , and f is an opening cost
function for facilities.
Output: A subset of facilities F ′ minimizing

∑
i∈F ′ fi +

∑
j∈C d(j ,F ′)

where fi is the opening cost of facility i and d(j ,F ′) = mini∈F ′d(j , i).

In the capacitated version, facilities have capacities and cities can
have demands (rather than unit demand). The constraint is that a
facility can not have more assigned demand than its capacity so it is
not possible to always assign a city to its closest facility.

23 / 42



UFL and k-median problems continued

Deifnition of k-median problem

Input: (F ,C , d , k) where F ,C , d are as in UFL and k is the number of
facilities that can be opened.
Output: A subset of facilities F ′ with |F ′| = k minimizing

∑
j∈C d(j ,F ′)

These problems are clearly well motivated. Moreover, they have been
the impetus for the development of many new algorithmic ideas which
we will hopefully at least touch upon throughout the course.

There are many variants of these problems and in many papers the
problems are defined so that F = C ; that is, any city can be a facility.
If a solution can be found when F and C are disjoint then there is a
solution for the case of F = C .
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UFL and k-median problems continued

It is known (Guha and Khuller) that UFL is hard to approximate to
within a factor better than 1.463 assuming NP is not a subset of
DTIME (nlog log n) and the k-median problem is hard to approximate to
within a factor better than 1 + 1/e ≈ 1.736 (Jain, Mahdian, Saberi).

The UFL problem is better understood than k-median. After a long
sequence of improved approximation results the current best
polynomial time approximation is 1.488 (Li, 2011).

For k-median, until recently, the best approximation was by a local
search algorithm. Using a p-flip (of facilities) neighbourhood, Arya et
al (2001) obtain a 3 + 2/p approximation which yields a 3 + ε
approximation running in time O(n2/ε).

Li and Svennsson (2013) have obtained a (1 +
√

3 + ε) approximation
running in time O(n1/ε

2
). Surprisingly, they show that an α

approximate “pseudo solution” using k + c facilities can be converted
to an α + ε approximate solution running in nO(c/ε) times the
complexity of the pseudo solution.
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Some additional comments on local search

An interesting (but probably difficult) open problem is to use a non
oblivious local search for either the UFL or k-median problems.

But suffice it to say now that local search is the basis for many
practical algorithms, especially when the idea is extended by allowing
some well motivated ways to escape local optima (e.g. simulated
annealing, tabu search) and combined with other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn’t been
much interest in formalizing the method and establishing limits.

LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

I No such method is known to run in polynomial time in the worst case.
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Matroids and independence systems

Independence systems and matroids
Let M = (U,F), where U is a set of elements, F ⊆ 2|U|; I ∈ F is
called an independent set.
An (hereditary) independence system satisfies the following properties:
1) ∅ ∈ F ; often stated although not necessary if F 6= ∅
2) S ⊆ T ,T ∈ F ⇒ S ∈ F
A matroid is an independence system that also satisfies:
3) S ,T ∈ F , |S | < |T |, then ∃x ∈ T \ S such that S ∪ {x} ∈ F
Equivalently, matroids are hereditary independence systems that
saistify the following rank property:
3’) All maximal independent sets have the same cardinality r and r is
called the rank of the matroid. A maximal independent set is called a
basis.

Another equivalent definition, is the following basis exchange
property: If S and T are different bases, then
∀x ∈ S ,∃y ∈ T : S \ {x} ∪ {y} is independent.

27 / 42



Examples of matroids

Sets having at most k elements constitute the independent sets in a
uniform matroid

Other common examples, include
1 Partition matroids extend the uniform matroid (i.e. cardinality

constraint) as follows: The universe U is a disjoint union
U1 ∪ U2 . . . ∪ Ur and there are individual cardiality constraints ki for
each block Ui of the partition.

2 Graphic matroids: U is the set of edges E in a graph G = (V ,E ) and
E ′ ⊆ E is independent if G = (V ,E ′) is acyclic.

3 Linear matroids where U is a set of vectors in a vector space and I is
independent in the usual sense of linear independence. Indeed,
matroids are a combinatorial abstraction of linear independence.

In each of these applications, one should verify the matroid properties
and, in particular, the exchange property. For example, for a graphic
matroid, if S is a maximal independent set of edges in a connected
graph, then S is an MST and any edge e /∈ S will create a unique
cycle.
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Matroids and the natural greedy algorithm.

There is an elegant development starting in the 1950’s with the work
of Rado [1957], Gale 1968 and Edmonds [1970, 1971], (extended by
Korte and Lovász [1981, 1984], and others) as to contexts in which
“the natural” or standard greedy algorithm will produce an optimal
solution or “good” appromximation for maximizing functions in many
applications.

Here the well known example is the minimum (resp. maximum)
spanning tree problem where the edges of a graph are the elements
and the indepedent sets are forests in the graph. Kruskal’s greedy
algorithm is the natural greedy MST algorithm. which sorts edges by
the non-decreasing weight. weights (resp. by non-increasing weight
for the maximation problem) and then in this order adds an edge to
the solution whenever it does not create a cycle.
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Rado-Edmonds characterization of matroids in terms
of the standard greedy algorithm

The “standard greedy algorithm” Greedy for maximizing a linear function
(over some universe U) subject to some independence constraint:

Standard Greedy for a Maximization Problem

Let S := ∅
While ∃u : S ∪ {u} is independent

S := S ∪ {u} where u is an element of largest weight
such that S ∪ {u} is independent

End While

Rado: For independence in a matroid M, Greedy is an optimal algorithm
for maximizing the weight of basis (i.e. maximizing a linear function
subject to a matroid constraint).
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Rado-Edmonds characterization continued

Note: For linear functions, the problem of minimizing a linear function
subject to being a basis is an equivalent problem.

Standard Greedy for a Minimization Problem

Let S := ∅
While ∃u : S ∪ {u} is independent

S := S ∪ {u} where u is an element of smallest weight
such that S ∪ {u} is independent

End While

The Rado result can be seen as an abstraction of Kruskal’s min spanning
tree (forest) greedy algorithm.

Edmonds: For an hereditary independence system M, if Greedy is optimal
for every linear function (i.e. for every set of weights) then M is a matroid.
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More general independence systems

As we noted, there are many equivalent ways to define matroids. In
particular, the exchange property immediately implies that in a matroid M
every maximal independent set (called a base) has the same cardinality,
the rank of M. We can also define a base for any subset S ⊆ U. Matroids
are those independence systems where all bases have the same cardinality.
Let k be a positive integer. A (Jenkyns) k-independence system satisfies
the weaker property that for any set S and two bases B and B ′ of S ,
|B|
|B′| ≤ k . Matroids are precisely the case of k = 1.
Examples:

The intersection of k matroids

Mestre’s k-extendible systems where the matroid exchange property is
replaced by : If S ⊆ T and S ∪ {u} and T are independent, then
∃Y ⊆ T − S : |Y | ≤ k and T − Y ∪ {u} is independent.

Independent sets in k + 1 claw free graphs. In such graphs, the
neighbourhood of every node has at most k independent vertices.
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The standard greedy algorithm for k-systems and
k + 1 claw free graphs

Jenkyns shows that the standard greedy algorithm is a 1
k -approximation for

maximizing a linear function subject to independence in a k-independence
system. It follows (as we already know from our earlier study of greedy
algorithms) that the standard greedy algorithm is a 1

k -approximation for
independence in a k + 1 claw free graph.

The same approximation applies for a 1-exchange local search algorithm.
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Submodular functions

Let U be a universe. In what follows, we will only be interested in set
functions that satisfy f (S) ≥ 0 for all S ⊆ U. We will also assume
functions are normalized in that F (∅) = 0, These assumptions are not
that essental but they are standard and without these assumptions
statements and proofs become somewwhat more complex.

A sublinear set function satisfies the property that
f (S ∪ T ) ≤ f (S) + f (T ) for all subsetes S ,T of U.

When f (S ∪ T ) + f (S ∩ T ) = f (S) + f (T ), the function is a linear
(also called modular) function.

A submodular set function f : U → R satisfies the following property:
f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T )

It follows that modular set functions are submodular and submodular
functions are sublinear.

Submodular functions can be monotone or non-monotone. A
monotone submodular function also satisifes the property that
f (S) ≤ f (T ) whenever S ⊆ T .
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An alternative characterization and examples of
submodular functions

Submodular functions satisfy and can also be defined as those satisfying a
decreasing marginal gains property. Namely,
For S ⊂ T , f (T ∪ {x} − f (T ) ≤ f (S ∪ {x})− f (S). That is, adding
additional elements has decreasing (more precisely, non increasing)
marginal gain for larger sets.

Most applications of submodular functions are for monotone submodular
functions. For example, in practice, when we are obtaining results from a
search engine, as we obtain more and more results, we tend to obtain less
additional value.

Modular functions are monotone.

The rank function of a matroid is a monotone submodular function.

The two most common examples of non-monotone submodular functions
are max-cut and max-di-cut (i.e., max directed cut)
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Monotone submodular function maximization

The monotone problem is only interesting when the submodular
maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k )k

approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}
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Proof: greedy approx for monotone submodular
maximization subject to cardinality constraint

We want to prove the 1− (1− 1
k )k approximation bound.

Let Si be the set after i iterations of the standard greedy algorithm and let
S∗ = {x1, . . . , xk} be an optimal seti so that OPT = f (S∗). For any set S
and element x , let fS(x) = f (S ∪ {x})− f (S) be the marginal gain by
adding x to S . The proof uses the following sequence of inequalities:
f (S∗) ≤ f (Si ∪ S∗) by monotonicity

≤ f (Si )+(f (Si )∪{x1}−f (Si ))+(f (Si )∪{x1, x2}−f (Si∪{x1}))+. . .
(by submodularity; question 5(a) on assignment)

≤ f (Si ) + fSi (x1) + fSi (x2) + . . . fSi (xk)
(again by submodularity)

≤ f (Si ) + k · (f (Si+1 − f (Si )) by the greedy assumption

Equivalently, f (Si+1 ≥ f (Si ) + 1
k (f (OPT )− f (Si )

The proof is completed by showing f (Si ) ≥ (1− (1− 1
k )i ) · OPT by

induction on i .
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Where we ended on February 7

The lecture on Thursday, February 7 basically ended on slide 36
with the statement of the standard greedy algorithm for maximizing
a monotone submodular subject to a cardinality constraint. This
algorithm provides a 1− 1

e -approximation for any caridnality
constraint. I added some additional slides for the purpose of the
assignment. We will continue next week with a sketch of the proof
of this approximation bound.
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Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a 1-exchange local search algorithm (that will follow)
achieve a 1

2 approximation for maximzing a monotone submodular
function subject to an arbitrary matroid constraint.

They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.
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Monotone submodular maximization subject to a
matroid constraint

We need some additional facts about matroids and submodular functions.

Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two bases). Then there is a
bijection π between O \ S and S \ O such that for all
x ∈ O, (S \ {π(x)}) ∪ x is independent.
We have the following facts for a submodular function f on a ground
set U:

1 Let C = {c1, . . . , c`} ⊆ U \ S . Then

∑̀
i=1

[f (S + ci )− f (S)] ≥ f (S ∪ C )− f (S)

2 Let {t1, . . . , t`} be elements of S . Then

∑̀
i=1

[f (S)− f (S \ {ti}] ≤ f (S)
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The 1-exchange local search algorithm

We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x /∈ S such that
(S \ {π(x)}) ∪ {x} > f (S). Here π is the bijection as in Brualdi’s result.

The previous local seach algorithm provides a 1
2 -approximation for

maximizing a monotone submodular funstion.
Now let S be a local optimum and O an optimal solution. By local
optimality, for all x ∈ O \ S , we have

f (S) ≥ f ((S \ {π(x)}) ∪ {x})
Subtracting (S \ {π(x)}) from both sides, we have

f (S)− f (S \ {π(x)}) ≥ f ((S \ {π(x)}) ∪ {x})− f (S \ {π(x)})
From submodularity,

f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)}) ≥ f (S ∪ {x})− f (S)

Thus for all x ∈ O \ S
f ((S \ {π(x)} ≥ f (S ∪ {x})− f (S)
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Completing the local search approximation

Summing over all such x yields∑
x∈O\S [f (S)− f (S \ {π(x)})] ≥∑

x∈O\S [f (S ∪ {x})− f (S)]
Applying the first fact on slide 28 to the right hand side of this inequality
and the second fact to the left hand side, we get

f (S) ≥ f (S ∪ (O \ S))− f (S) = f (O ∪ S)− f (S) ≥ f (O)− f (S)

which gives the desired 1
2 -approximation.
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