english

42

CSC2420: Algorithm Design, Analysis and Theory
Spring 2019

Allan Borodin

February 7, 2019

/42

Week 5

Announcements:

@ Assignment 1 is now complete and the due date has been set to

February 25 which is the last date to drop a graduate course without

penalty.

Todays agenda

@ Briefly mention reverse or backward greedy algorithms.

@ Local search

@ Exact-Max-k-Sat; oblivious and non-onlvious local search

@ Oblivious and non-oblivious local search for WMIS wrt. k +1
claw-free graphs.

@ Matroids

@ Submodular functions

@ Greedy and local search for maximizing linear and monotone

submodular functions subject to a matroid and other independence
constraints.

)

)

Local search: the “other” conceptually simplest
paradigm

Along with greedy and greedy-like algorithms, local search is (for me) one
of the two conceptually simplest search/optimization paradigms. Like
greedy algorithms, there are many variations of this paradigm.

The vanilla local search paradigm
“Initialize” S
While there is a “better” solution S’
in the “local neighbourhood” Nbhd(S)
S=5
End While

v

If and when the algorithm terminates, the algorithm has computed a focal
optimum.

Local search as a well defined algorithm

To make local search a precise algorithmic model, we have to say:

© How are we allowed to choose an initial solution?

© What constitutes a reasonable definition of a local neighbourhood?
© What do we mean by “better"?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific.

42

Towards a more precise definition for local search

@ We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.

Of course, in practice we can use any efficiently computed solution.

@ We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

© In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S'|du(S5,S’) < k} for some “small” k where dy(S,S’) is
the Hamming distance.

@ More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|¥.

© We can view Ford Fulkerson flow algorithms as local search algorithms
where the (possibly exponential size but efficiently search-able)
neighbourhood of a flow solution S are flows obtained by adding an
augmenting path flow.

What does “better” solution mean? Oblivious and
non-oblivious local search

@ For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

@ For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons | cannot
understand, this has been termed oblivious local search. | think it
should be called greedy local search.

@ For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

@ In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

@ For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.

6 /42

Exact Max-k-Sat

@ Given: An exact k-CNF formula
F=GNGA...NCp,
where C; = (1 V2 ...V (%) and & € {x, % |1 < k < n} .

@ In the weighted version, each C; has a weight w;.

@ Goal: Find a truth assignment 7 so as to maximize

W(r) = w(F|7),

the weighted sum of satisfied clauses w.r.t the truth assignment 7.

@ It is NP hard to achieve an approximation better than % for exact
Max-3-Sat and hence that hard for the non exact version of
Max-k-Sat for k > 3.

@ Max-2-Sat can be approximated to within a factor ~ .87856.

42

The natural oblivious local search

@ A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:

Ng(7) ={7":7 and 7’ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment 7
WHILE there exists 7 € Ny(7) such that W(7)> W(7)
T="7

END WHILE

How good is this oblivious local search algorithm?

@ Note: Following the standard convention for Max-Sat, | am using
approximation ratios < 1.

@ It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is %

@ In fact, for every exact 2-Sat formula, the algorithm finds an
assignment 7 such that W(7) > 25°7, w;, the weight of all clauses,
and we say that the “totality ratio” is at least %

@ More generally for Exact Max-k-Sat the ratio is kLH

This ratio is essentially a tight ratio for any d = o(n).

@ This is in contrast to an online greedy algorithm derived from a naive
randomized algorithm that achieves totality ratio (2% — 1)/2k.

@ “In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm
and then apply local search. o

Analysis of the oblivious local search for Exact
Max-2-Sat

@ Let 7 be a local optimum and let

> Sp be those clauses that are not satisfied by
» S; be those clauses that are satisfied by exactly one literal by 7
» S, be those clauses that are satisfied by two literals by

o Let W(S;) be the corresponding weight.

10 /42

Analysis of obvlivious Exact-Max-2-Sat local search
continued

@ We will say that a clause involves a variable x; if either
xj or X; occurs in the clause. Then for each j, let

@ A; be those clauses in Sq involving the variable Xx;.

@ B; be those clauses C in S involving the variable x;
such that it is the literal x; or X; that is satisfied in C
by 7.

@ C; be those clauses in S, involving the variable x;.

o Let W(A)), W(B;), W(C;) be the corresponding weights.

11/42

Analysis of the oblivious local search (continued)

@ Summing over all variables x;, we get

@ 2W(So) = >_; W(A;) noting that each clause in So gets counted
twice.

4 W(Sl) = Zj W(Bj)
@ Given that 7 is a local optimum, for every j, we have

W(Aj) < W(B))
or else flipping the truth value of x; would
improve the weight of the clauses being satisfied.

@ Hence (by summing over all j),

2Wh < WA

12 /42

Finishing the analysis

@ It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W(So) < W(So) W(So)
W(So)+W(51)+W(S) = 3W(S)+W(S2) — 3W(Sy)

@ It is not easy to verify but there are examples showing that this %
bound is essentially tight for any Ny neighbourhood for d = o(n).

@ It is also claimed that the bound is at best % whenever d < n/2. For
d = n/2, the algorithm would be optimal.

@ In the weighted case, we have to worry about the number of
iterations. And here we can speed up the termination by insisting that
any improvement has to be sufficiently better.

13 /42

Using the proof to improve the algorithm

Aside: Using adversarial examples and viewing algorithms as a game
against an advesray is an idea that is now vefy active in “adversarial
learning”.

@ We can learn something from this proof to improve the performance.
@ Note that we are not using anything about W(S,).

@ If we could guarantee that W(Sp) was at most W(S) then the ratio
of clause weights not satisfied to all clause weights would be % .

@ Claim: We can do this by enlarging the neighbourhood to include
7" = the complement of 7.

14 /42

The non-oblivious local search

@ We consider the idea that satisfied clauses in S> are more valuable
than satisfied clauses in S; (because they are able to withstand any
single variable change).

@ The idea then is to weight S, clauses more heavily.

@ Specifically, in each iteration we attempt to find a 7/ € Ny(7) that

improves the potential function
3
5 W(51) +2W(S,)

instead of the oblivious W(S51) + W(S).

@ More generally, for all k, there is a setting of scaling coefficients
Cl, ..., Ck, such that the non-oblivious local search using the
potential function c; W(S51) + caW(S2 + ... + ck W(Sk) results

k
2211 for exact Max-k-Sat.

in approximation ratio

15 /42

Sketch of % totality bound for the non oblivious local
search for Exact Max-2-Sat

@ Renaming variables, we can assume that 7 is the all true assignment.
@ Let P;; be the weight of all clauses in S; containing Xx;.
@ Let N;; be the weight of all clauses in S; containing X;.

@ Here is the key observation for a local optimum 7 wrt the stated
potential:
din
1 3 1 3
—5P2j = 5P+ 3N+ 5No <0

@ Summing over variables P; = Ny = W(S;1), P, =2W(S;) and
No = 2W/(Sp) and using the above inequality we obtain
3W(S) < W(51) + W(S2)

16 /42

Some experimental results concerning Max-Sat

@ Of course, one wonders whether or not a worse case approximation
will actually have a benefit in “practice”.

@ “In practice”, local search becomes more of a “heuristic” where one
uses various approaches to escape (in a principled way) local optima
and then continuing the local search procedure. Perhaps the two most
commonly used versions are Tabu Search and Simulated Annealing.

@ Later, we will also discuss methods based on online algorithm and
“random walks” and other randomized methods (and their
derandomizations). .

@ We view these algorithmic ideas as starting points.

@ But for what it is worth, here are some 2010 experimental results
both for artifically constructed instances and well as for one of the
many benchmark test sets for Max-Sat.

@ Recent experimental results by Poloczek and Willamson show that
various ways to use greedy and local search algorithms can compete
(wrt. various test sets) with “state of the art” simulated annealing

algorithms and walk-sat algorithms while using much less time. s

Experiment for unweighted Max-3-Sat

0.025|

0.015]

Unsat ratio

f 7S = m e = X o = X = m X m e = =

—a—8—a —8—8—8—=%
PeG--0--B--8---B---B--1
T"0:-0--0--

50 250 450 650 850 1050

Fig. 1. Average performance when executing on random instances of exact MAX-3-

SAT.

Number of variables

——0LS
-%-NOLS
=TS
-B-NOLS+TS
-©-SA
-©-MWS

[From Pankratov and Borodin]

18/ 42

Experiment for Benchmark Max-Sat

‘ H OLS ‘ NOLS ‘ TS ‘NOLS‘FTS‘ SA MWS ‘
OLS 0 457 741 744 730 567
NOLS 160 0 720 750 705 504
TS 0 21 0 246 316 205
NOLS+TS 8 0 152 0 259 179
SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The

tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

[From Pankratov and Borodin]

19/42

More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLSHTS 2Pass+NOLS SA WalkSat

Y% sat @time| %sat @ time| %sat @ time| %sat @ time

SC-APP| 90.53 93.59s| 99.54 45.14s| 99.77 104.88s| 96.50 2.16s

MS-APP| 83.60 120.14s| 98.24 82.68s| 99.39 120.36s| 89.90 0.48s
SC-CRAFTED| 92.56 61.07s| 99.07 22.65s| 99.72 70.07s| 98.37 0.66s
MS-CRAFTED| 84.18 0.65s| 83.47 0.01s| 85.12 0.47s| 82.56 0.06s
SC-RANDOM| 97.68 41.51s| 99.25 40.68s| 99.81 52.14s| 98.77 0.94s
MS-RANDOM| 88.24 0.49s| 88.18 0.00s| 88.96 0.02s| 87.35 0.06s

Figure: Table from Poloczek and Williamson 2017

Note: 2Pass is a deterministic “2-pass online algorithm” that is derived

from a randomized online algorithm that we will discuss soon.
20 /42

Oblivious and non-oblivious local search for k +1
claw free graphs

@ We again consider the weighted max (independent) vertex set in a
k + 1 claw free graph. (Recall the argument generalizing the
approximation ratio for the k set packing problem.)

@ The standard greedy algorithm and the 1-swap oblivious local search
both achieve a % approximation for the WMIS in k + 1 claw free
graphs. Here we define an “/-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ¢ vertices and
removing all vertices adjacent to S.

NOTE: We will continue to use fractional approximation ratios for
the maximization problems being considered this week.

@ For the unweighted MIS, Halldérsson shows that a a 2-swap oblivious
local search will yield a %—i—l approximation.

21 /42

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

N
N
N
)

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

@ Intuitively, if one vertex set Vi is small but vertices in V; have large
weights that is better than a solution with many small weight vertices.

N
N
N
)

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

@ Intuitively, if one vertex set Vi is small but vertices in V; have large
weights that is better than a solution with many small weight vertices.

@ Berman chooses the potential function g(S) =Y, .5 w(v)?. Ignoring

some small €'s, his k-swap non-oblivious local search achieves a

locality gap of %H for WMIS on k + 1 claw-free graphs.

N
N
N
)

The (metric) facility location and k-median problems

@ Two extensively studied problems in operations research and CS
algorithm design are the related uncapacitated facility location
problem (UFL) and the k-median problem. In what follows we restrict
attention to the (usual) metric case of these problems defined as

follows:

Definition of UFL

Input: (F, C,d, f) where F is a set of faciltites, C is a set of clients or
cities, d is a metric distance function over F U C, and f is an opening cost
function for facilities.

Output: A subset of facilities F" minimizing 3,/ fi +>-;cc d(j, F')
where f; is the opening cost of facility / and d(j, F') = minjcpd(j, i).

@ In the capacitated version, facilities have capacities and cities can
have demands (rather than unit demand). The constraint is that a
facility can not have more assigned demand than its capacity so it is
not possible to always assign a city to its closest facility.

UFL and k-median problems continued

Deifnition of k-median problem

Input: (F, C,d, k) where F, C,d are as in UFL and k is the number of
facilities that can be opened.

Output: A subset of facilities £’ with [F’| = k minimizing >, d(j, F’)

@ These problems are clearly well motivated. Moreover, they have been
the impetus for the development of many new algorithmic ideas which
we will hopefully at least touch upon throughout the course.

@ There are many variants of these problems and in many papers the
problems are defined so that F = C; that is, any city can be a facility.
If a solution can be found when F and C are disjoint then there is a
solution for the case of F = C.

UFL and k-median problems continued

It is known (Guha and Khuller) that UFL is hard to approximate to
within a factor better than 1.463 assuming NP is not a subset of
DTIME (n'°8'°e ") and the k-median problem is hard to approximate to
within a factor better than 1+ 1/e & 1.736 (Jain, Mahdian, Saberi).
The UFL problem is better understood than k-median. After a long
sequence of improved approximation results the current best
polynomial time approximation is 1.488 (Li, 2011).

For k-median, until recently, the best approximation was by a local
search algorithm. Using a p-flip (of facilities) neighbourhood, Arya et
al (2001) obtain a 3 4+ 2/p approximation which yields a 3+ ¢
approximation running in time O(n?/€).

Li and Svennsson (2013) have obtained a (1 + /3 + ¢) approximation
running in time O(nl/EQ). Surprisingly, they show that an «
approximate “pseudo solution” using k + ¢ facilities can be converted
to an « + € approximate solution running in n9(c/€) times the
complexity of the pseudo solution.

Some additional comments on local search

@ An interesting (but probably difficult) open problem is to use a non
oblivious local search for either the UFL or k-median problems.

@ But suffice it to say now that local search is the basis for many
practical algorithms, especially when the idea is extended by allowing
some well motivated ways to escape local optima (e.g. simulated
annealing, tabu search) and combined with other paradigms.

@ Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn't been
much interest in formalizing the method and establishing limits.

@ LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

» No such method is known to run in polynomial time in the worst case.

26 /42

Matroids and independence systems

@ Independence systems and matroids
Let M = (U, F), where U is a set of elements, F C 2IYl: | € Fis
called an independent set.
An (hereditary) independence system satisfies the following properties:
1) @ € F, often stated although not necessary if F # &
2)SCT, TeF=SecF

@ A matroid is an independence system that also satisfies:
3)S, T € F,|S| < |T|, then 3x € T\ S such that SU{x} € F
Equivalently, matroids are hereditary independence systems that
saistify the following rank property:
3") All maximal independent sets have the same cardinality r and r is
called the rank of the matroid. A maximal independent set is called a
basis.

@ Another equivalent definition, is the following basis exchange
property: If S and T are different bases, then
Vx €S,y e T:5\{x}U{y} is independent.

Examples of matroids

@ Sets having at most k elements constitute the independent sets in a
uniform matroid
@ Other common examples, include
@ Partition matroids extend the uniform matroid (i.e. cardinality
constraint) as follows: The universe U is a disjoint union
Ui U U, ...U U, and there are individual cardiality constraints k; for
each block U; of the partition.
@ Graphic matroids: U is the set of edges E in a graph G = (V, E) and
E’ C E is independent if G = (V, E') is acyclic.
© Linear matroids where U is a set of vectors in a vector space and [is
independent in the usual sense of linear independence. Indeed,
matroids are a combinatorial abstraction of linear independence.
In each of these applications, one should verify the matroid properties
and, in particular, the exchange property. For example, for a graphic
matroid, if S is a maximal independent set of edges in a connected
graph, then S is an MST and any edge e ¢ S will create a unique
cycle.

Matroids and the natural greedy algorithm.

@ There is an elegant development starting in the 1950's with the work
of Rado [1957], Gale 1968 and Edmonds [1970, 1971], (extended by
Korte and Lovész [1981, 1984], and others) as to contexts in which
“the natural” or standard greedy algorithm will produce an optimal
solution or “good” appromximation for maximizing functions in many
applications.

@ Here the well known example is the minimum (resp. maximum)
spanning tree problem where the edges of a graph are the elements
and the indepedent sets are forests in the graph. Kruskal's greedy
algorithm is the natural greedy MST algorithm. which sorts edges by
the non-decreasing weight. weights (resp. by non-increasing weight
for the maximation problem) and then in this order adds an edge to
the solution whenever it does not create a cycle.

Rado-Edmonds characterization of matroids in terms
of the standard greedy algorithm

The “standard greedy algorithm” Greedy for maximizing a linear function
(over some universe U) subject to some independence constraint:

Standard Greedy for a Maximization Problem

Let $ =0

While Ju : S U {u} is independent
S := SU{u} where u is an element of largest weight
such that S U {u} is independent

End While

Rado: For independence in a matroid M, Greedy is an optimal algorithm
for maximizing the weight of basis (i.e. maximizing a linear function
subject to a matroid constraint).

30 /42

Rado-Edmonds characterization continued

Note: For linear functions, the problem of minimizing a linear function
subject to being a basis is an equivalent problem.

Standard Greedy for a Minimization Problem

Let S :=o

While Ju : S U {u} is independent
S := SU{u} where u is an element of smallest weight
such that S U {u} is independent

End While

The Rado result can be seen as an abstraction of Kruskal's min spanning
tree (forest) greedy algorithm.

Edmonds: For an hereditary independence system M, if Greedy is optimal
for every linear function (i.e. for every set of weights) then M is a matroid.

31/42

More general independence systems

As we noted, there are many equivalent ways to define matroids. In
particular, the exchange property immediately implies that in a matroid M
every maximal independent set (called a base) has the same cardinality,
the rank of M. We can also define a base for any subset S C U. Matroids
are those independence systems where all bases have the same cardinality.
Let k be a positive integer. A (Jenkyns) k-independence system satisfies
the weaker property that for any set S and two bases B and B’ of S,

% < k. Matroids are precisely the case of kK = 1.

Examples:

@ The intersection of kK matroids

@ Mestre's k-extendible systems where the matroid exchange property is
replaced by : If S C T and SU{u} and T are independent, then
Y CT-S:]Y|<kand T — Y U/{u} is independent.

@ Independent sets in k + 1 claw free graphs. In such graphs, the
neighbourhood of every node has at most k independent vertices.

The standard greedy algorithm for k-systems and
k + 1 claw free graphs

Jenkyns shows that the standard greedy algorithm is a %—approximation for
maximizing a linear function subject to independence in a k-independence
system. It follows (as we already know from our earlier study of greedy
algorithms) that the standard greedy algorithm is a %—approximation for
independence in a k + 1 claw free graph.

The same approximation applies for a 1-exchange local search algorithm.

33 /42

Submodular functions

Let U be a universe. In what follows, we will only be interested in set
functions that satisfy £(S) > 0 for all S C U. We will also assume
functions are normalized in that F(@) = 0, These assumptions are not
that essental but they are standard and without these assumptions
statements and proofs become somewwhat more complex.
@ A sublinear set function satisfies the property that
f(SUT)<f(S)+ f(T) for all subsetes S, T of U.
@ When f(SUT)+f(SNT)=1f(S)+ f(T), the function is a linear
(also called modular) function.
@ A submodular set function f : U — R satisfies the following property:
F(SUT)+f(SNT)<F(S)+f(T)
@ It follows that modular set functions are submodular and submodular
functions are sublinear.
@ Submodular functions can be monotone or non-monotone. A
monotone submodular function also satisifes the property that
f(S) < f(T) whenever S C T.

34 /42

An alternative characterization and examples of
submodular functions

Submodular functions satisfy and can also be defined as those satisfying a
decreasing marginal gains property. Namely,

For SC T,f(TU{x}—f(T)<f(SU{x})—f(S). Thatis, adding
additional elements has decreasing (more precisely, non increasing)
marginal gain for larger sets.

Most applications of submodular functions are for monotone submodular

functions. For example, in practice, when we are obtaining results from a

search engine, as we obtain more and more results, we tend to obtain less
additional value.

Modular functions are monotone.
The rank function of a matroid is a monotone submodular function.

The two most common examples of non-monotone submodular functions
are max-cut and max-di-cut (i.e., max directed cut)

35 /42

Monotone submodular function maximization

Standard greedy for submodular functions wrt cardinality constraint
S =0
While |S| < k
Let u maximize f(SU{u}) — f(S)
S:=Suf{u}
End While 36/ 42

The monotone problem is only interesting when the submodular
maximization is subject to some constraint.

Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f(S) subject to |S| < k for some k
and since f is monotone this is the same as the constraint f(S) = k.
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1 — %
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy isa 1 — (1 — %)k
approximation for a cardinality k constraint.

Proof: greedy approx for monotone submodular
maximization subject to cardinality constraint

We want to prove the 1 — (1 — %)k approximation bound.
Let S; be the set after i iterations of the standard greedy algorithm and let
S* ={x1,...,xx} be an optimal seti so that OPT = f(S*). For any set S
and element x, let fs(x) = f(S U {x}) — f(S) be the marginal gain by
adding x to S. The proof uses the following sequence of inequalities:
f(5*) < f(5; U S*) by monotonicity
< F(S)+(F(S)U{xa} — F(S)+ (F(S)U{xt e} — F(SiUGa)) 4.
(by submodularity; question 5(a) on assignment)
< F(S) + f5,(a) + f5,02) + - fs,(xk)
(again by submodularity)
< f(S;) + k- (F(Si+1 — f(S;)) by the greedy assumption

Equivalently, f(Si+1 > £(S;) + £(f(OPT) — £(S;)

The proof is completed by showing f(S;) > (1 — (1 — %)’) - OPT by
induction on 1.

37 /42

Where we ended on February 7

The lecture on Thursday, February 7 basically ended on slide 36
with the statement of the standard greedy algorithm for maximizing
a monotone submodular subject to a cardinality constraint. This
algorithm provides a 1 — %-approximation for any caridnality
constraint. | added some additional slides for the purpose of the
assignment. We will continue next week with a sketch of the proof
of this approximation bound.

38 /42

Generalizing to a matroid constraint

@ Nemhauser and Wolsey [1978] showed that the 1 — % approximation
is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

@ Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

@ Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

@ Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a l-exchange local search algorithm (that will follow)
achieve a % approximation for maximzing a monotone submodular
function subject to an arbitrary matroid constraint.

@ They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.

39 /42

Monotone submodular maximization subject to a
matroid constraint

We need some additional facts about matroids and submodular functions.

@ Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two bases). Then there is a
bijection 7 between O\ S and S\ O such that for all
x € 0,(S\ {7(x)}) U x is independent.

@ We have the following facts for a submodular function f on a ground
set U:

Q Let C={c1,...,c0} CU\S. Then
¢
SIS +a)—F(S)] = F(SUC) - £(S)

i=1
@ Let {t1,...,t} be elements of S. Then
¢

> _[F(S) —f(S\ {t:}] < £(5)

i=1

40 /42

The 1-exchange local search algorithm

We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x ¢ S such that
(S\{m(x)}) U {x} > f(S). Here 7 is the bijection as in Brualdi's result.

The previous local seach algorithm provides a %—approximation for
maximizing a monotone submodular funstion.

Now let S be a local optimum and O an optimal solution. By local
optimality, for all x € O\ S, we have

F(S) = F((S\ {m(x)}) U {x})
Subtracting (S \ {7(x)}) from both sides, we have
F(S) = F(S\{m(x)}) = F((S\ {m(x)}) U {x}) = F(S\ {=(x)})
From submodularity,
FI(S\{m(x)}) U{x}) = (S\ {m(x)}) = F(SU{x}) = £(5)
Thus for all x € O\ S

FI(S\ ()} = F(SU{x}) = £(S5)

41 /42

Completing the local search approximation

Summing over all such x yields

2oxeo\slf(S) = F(S\AT)N] = Yieonslf(S U {x}) = F(S)]
Applying the first fact on slide 28 to the right hand side of this inequality
and the second fact to the left hand side, we get

f(5)>f(SU(O\S))—f(S)=f(OUS)—f(S)>f(0)—f1(S)

which gives the desired %—approximation.

42 /42

	Week 5

