
Online Learning

Introduction

I Intersection of Online Algorithms & Machine Learning

I Make decisions with limited information about the past

I Connections to Game Theory, Information Theory

Large scale applications:

I Advertisement placement

I Web ranking

I Online recommendation

Classical Machine Learning

I Batch of training examples

I Separation between training and predicting phase

I e.g. PAC learning

Online Learning

General Theme

I Regret Analysis

I Prediction from expert advice

I Multi Armed Bandits

I Noisy Models

Online Learning Model

I Sequence of consecutive rounds.

I Learner given a question and is required to provide an answer.

I Correct answer is revealed and learner su↵ers a loss.

Instance domain: X
Target domain: Y
Prediction domain: D ◆ Y
for t=1,2,...

receive question xt 2 X
predict pt 2 D
receive answer yt 2 Y
su↵er loss l(pt , yt)

Learning From Examples

I Sequence of Examples

I Realizability Assumption

I All answers are generated by some hypothesis h⇤ : X ! Y
I Hypothesis (or Concept) class H is known to the learner.

Goal: Make as few mistakes as possible assuming h

⇤ and H chosen
by adversary.

Other models assume various levels of noise (adversarial/random).

Mistake Bound Model

Hypothesis class H, online learning algorithm A, integer T .

Definition (Mistake bound)

Given sequence S = ((x1, y1), ..., (xT , yT)), let MA(S) be the
number of mistakes algorithm A makes on S . Denote by MA(H)
the supremum of MA(S) over all sequences of the above form. A
bound of the form MA(H)  B < 1 is called a mistake bound.

Definition (Online learnability)

A hypothesis class H is online learnable if there exists an algorithm
A for which MA(H)  B < 1.

Online Binary Classification

I D = Y = {0, 1}
I Loss function: l(pt , yt) = |pt � yt |.

Algorithm: Consistent
input: A finite hypothesis class H
initialize: V1 = H
for t = 1, 2, ..

receive xt

choose any h 2 Vt

predict pt = h(xt)
receive true answer yt = h

⇤(xt)
update Vt+1 = {h 2 Vt : h(xt) = yt}

Algorithm Consistent enjoys the mistake bound of
MConsistent(H)  |H|� 1.

Halving

Algorithm: Halving
input: A finite hypothesis class H
initialize: V1 = H
for t = 1, 2, ..

receive xt

predict pt = argmaxr2{0,1}|h 2 Vt : h(xt) = r |
receive true answer yt
update Vt+1 = {h 2 Vt : h(xt) = yt}

Algorithm Halving enjoys the mistake bound of
MHalving (H)  log2(|H|).

Winnow Algorithm

Let H be the class of monotone disjunctions over {0, 1}n.

Algorithm: Winnow
Initialize the weights w1, ..,wn of the variables to 1.
Given an example x = {x1, .., xn}
if (w1x1 + w2x2 + ...+ wnxn � n) output 1

output 0 otherwise.
If the algorithm makes a mistake:
(a) If the algorithm predicts negative on a positive example, then
for each xi equal to 1, double the value of wi .
(b) If the algorithm predicts positive on a negative example, then
for each xi equal to 1, cut the value of wi in half.
Repeat

The Winnow Algorithm learns the class of disjunctions in the
Mistake Bound model, making at most 2 + 3r(1 + lgn) mistakes
when the target hypothesis is a disjunction of r variables.

Online Learnability

I Littlestone’s Dimension

I Standard Optimal Algorithm

I VC Dimension

Unrealizable Case

I Agnostic learning.

I Competitive with the best hypothesis in H.

I
Regret of the algorithm.

The regret of the algorithm relative to h when running on a
sequence of T examples is defined as:

RegretT (h) =
TX

t=1

l(pt , yt)�
TX

t=1

l(h(xt), yt)

The regret of the algorithm relative to a hypothesis class H is:

RegretT (H) = maxh2HRegretT (h)

Goal: algorithm with regret sublinear in T .

Cover’s Impossibility Result

I No algorithm can obtain regret sublinear in T even if |H| = 2.

Solution: Randomize

Predicting from Expert Advice

I Learner has to choose from the advice of d given experts.

I Pay cost corresponding to the advice of the expert.

I Competitive with the cost of best fixed expert.

I Randomize choice and get expected regret.

Weighted Majority

1. Initialize the weights w1, ..,wn of all experts to 1.
2. Given set of predictions {x1, ..., xn}, output 1 if

X

i :xi=1

wi �
X

i :xi=0

wi

output 0 otherwise.
3. Penalize each mistaken expert by multiplying its weight by 1/2.
Goto 2.

Theorem
The number of mistakes M made by the Weighted Majority

algorithm described above is never more than 2.41(m + lg(n)),
where m is the number of mistakes made by the best expert so far.

Multi Armed Bandits

I Partial information.

I Adversarial or stochastic.

I Exploration-exploitation trade-o↵.

Online Convex Optimization

I Perceptron algorithm (must define correct hypothesis class)

I Convexification techniques: randomization - surrogate loss
functions

I Follow-the-leader

I Online Gradient Descent

	Introduction

