Online Learning

Introduction

> Intersection of Online Algorithms & Machine Learning
» Make decisions with limited information about the past

» Connections to Game Theory, Information Theory

Large scale applications:
» Advertisement placement
» Web ranking

» Online recommendation

Classical Machine Learning

» Batch of training examples
» Separation between training and predicting phase

» e.g. PAC learning

Online Learning

General Theme
» Regret Analysis
» Prediction from expert advice
> Multi Armed Bandits
» Noisy Models

Online Learning Model

» Sequence of consecutive rounds.

> Learner given a question and is required to provide an answer.
» Correct answer is revealed and learner suffers a loss.

Instance domain: X
Target domain: Y
Prediction domain: D 2> Y
for t=1,2,...
receive question x; € X
predict p; € D
receive answer y; €)
suffer loss I(pt, yt)

Learning From Examples

» Sequence of Examples
> Realizability Assumption

» All answers are generated by some hypothesis h* : X —)
» Hypothesis (or Concept) class H is known to the learner.

Goal: Make as few mistakes as possible assuming h* and H chosen
by adversary.

Other models assume various levels of noise (adversarial/random).

Mistake Bound Model

Hypothesis class H, online learning algorithm A, integer T.

Definition (Mistake bound)

Given sequence S = ((x1,¥1), .., (x7,¥7)), let M4(S) be the
number of mistakes algorithm A makes on S. Denote by M4(H)
the supremum of M 4(S) over all sequences of the above form. A
bound of the form M4(#H) < B < o is called a mistake bound.

Definition (Online learnability)

A hypothesis class H is online learnable if there exists an algorithm
A for which M4(H) < B < 0.

Online Binary Classification

» D=Y={0,1}
» Loss function: /(pt, yt) = |pt — y|-

Algorithm: Consistent
input: A finite hypothesis class H
initialize: Vi = H
fort =12, ..
receive X
choose any h € V4
predict pr = h(x¢)
receive true answer y; = h*(x¢)
update Vip1 = {h € Vi : h(xt) = y+}

Algorithm Consistent enjoys the mistake bound of
MConsistent(H) < ’7‘” —1.

Halving

Algorithm: Halving
input: A finite hypothesis class H
initialize: Vi = H
fort=1,2,..
receive X;
predict p; = argmax,c(o.13|h € Vi : h(x) = r|
recelve true answer y;
update Vip1 = {h € Vi : h(xt) = y+}

Algorithm Halving enjoys the mistake bound of
Muaning(H) < loga(|H]).

Winnow Algorithm

Let H be the class of monotone disjunctions over {0,1}".

Algorithm: Winnow
Initialize the weights wa, .., w, of the variables to 1.
Given an example x = {x1, .., Xn }
if (wix1 + waxa + ... + wpx, > n) output 1
output 0 otherwise.
If the algorithm makes a mistake:
(a) If the algorithm predicts negative on a positive example, then
for each x; equal to 1, double the value of w; .
(b) If the algorithm predicts positive on a negative example, then
for each x; equal to 1, cut the value of w; in half.
Repeat

The Winnow Algorithm learns the class of disjunctions in the
Mistake Bound model, making at most 2 4 3r(1 + /gn) mistakes
when the target hypothesis is a disjunction of r variables.

Online Learnability

» Littlestone's Dimension
» Standard Optimal Algorithm
» VC Dimension

Unrealizable Case

» Agnostic learning.
» Competitive with the best hypothesis in H.
» Regret of the algorithm.

The regret of the algorithm relative to h when running on a
sequence of T examples is defined as:

Regrett(h) = Z I(pt, yt) — Z I(h(xt), yt)

t=1 t=1

The regret of the algorithm relative to a hypothesis class H is:
Regrett(H) = maxpecy Regrett(h)

Goal: algorithm with regret sublinear in T.

Cover's Impossibility Result

» No algorithm can obtain regret sublinear in T even if |H| = 2.

Solution: Randomize

Predicting from Expert Advice

v

Learner has to choose from the advice of d given experts.

v

Pay cost corresponding to the advice of the expert.

v

Competitive with the cost of best fixed expert.

v

Randomize choice and get expected regret.

Weighted Majority

1. Initialize the weights wy, .., w, of all experts to 1.
2. Given set of predictions {xi, ..., x}, output 1 if

2 wiz) w

ixj= ixj=

output 0 otherwise.

3. Penalize each mistaken expert by multiplying its weight by 1/2.
Goto 2.

Theorem

The number of mistakes M made by the Weighted Majority
algorithm described above is never more than 2.41(m + Ig(n)),
where m is the number of mistakes made by the best expert so far.

Multi Armed Bandits

» Partial information.
» Adversarial or stochastic.

» Exploration-exploitation trade-off.

Online Convex Optimization

» Perceptron algorithm (must define correct hypothesis class)

» Convexification techniques: randomization - surrogate loss
functions

» Follow-the-leader

» Online Gradient Descent

	Introduction

