Online Learning

Introduction

- Intersection of Online Algorithms & Machine Learning
- Make decisions with limited information about the past
- Connections to Game Theory, Information Theory

Large scale applications:

- Advertisement placement
- Web ranking
- Online recommendation

Classical Machine Learning

- Batch of training examples
- Separation between training and predicting phase
- ▶ e.g. PAC learning

Online Learning

General Theme

- Regret Analysis
- Prediction from expert advice
- Multi Armed Bandits
- Noisy Models

Online Learning Model

- Sequence of consecutive rounds.
- Learner given a question and is required to provide an answer.
- Correct answer is revealed and learner suffers a loss.

```
Instance domain: \mathcal{X}
Target domain: \mathcal{Y}
Prediction domain: \mathcal{D} \supseteq \mathcal{Y}
for t=1,2,...
receive question x_t \in \mathcal{X}
predict p_t \in \mathcal{D}
receive answer y_t \in \mathcal{Y}
suffer loss l(p_t, y_t)
```

Learning From Examples

- Sequence of Examples
- Realizability Assumption
 - ▶ All answers are generated by some hypothesis $h^*: \mathcal{X} \to \mathcal{Y}$
 - ▶ Hypothesis (or Concept) class *H* is known to the learner.

Goal: Make as few mistakes as possible assuming h^* and \mathcal{H} chosen by adversary.

Other models assume various levels of *noise* (adversarial/random).

Mistake Bound Model

Hypothesis class \mathcal{H} , online learning algorithm \mathcal{A} , integer \mathcal{T} .

Definition (Mistake bound)

Given sequence $S = ((x_1, y_1), ..., (x_T, y_T))$, let $M_{\mathcal{A}}(S)$ be the number of mistakes algorithm \mathcal{A} makes on S. Denote by $M_{\mathcal{A}}(\mathcal{H})$ the supremum of $M_{\mathcal{A}}(S)$ over all sequences of the above form. A bound of the form $M_{\mathcal{A}}(\mathcal{H}) \leq B < \infty$ is called a *mistake bound*.

Definition (Online learnability)

A hypothesis class \mathcal{H} is *online learnable* if there exists an algorithm \mathcal{A} for which $M_{\mathcal{A}}(\mathcal{H}) \leq B < \infty$.

Online Binary Classification

$$\blacktriangleright \mathcal{D} = \mathcal{Y} = \{0, 1\}$$

• Loss function: $l(p_t, y_t) = |p_t - y_t|$.

```
Algorithm: Consistent

input: A finite hypothesis class \mathcal{H}

initialize: V_1 = \mathcal{H}

for t = 1, 2, ...

receive x_t

choose any h \in V_t

predict p_t = h(x_t)

receive true answer y_t = h^*(x_t)

update V_{t+1} = \{h \in V_t : h(x_t) = y_t\}
```

Algorithm **Consistent** enjoys the mistake bound of $M_{Consistent}(\mathcal{H}) \leq |\mathcal{H}| - 1.$

Halving

Algorithm: Halving input: A finite hypothesis class \mathcal{H} initialize: $V_1 = \mathcal{H}$ for t = 1, 2, ...receive x_t predict $p_t = argmax_{r \in \{0,1\}} | h \in V_t : h(x_t) = r |$ receive true answer y_t update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Algorithm **Halving** enjoys the mistake bound of $M_{Halving}(\mathcal{H}) \leq \log_2(|\mathcal{H}|).$

Winnow Algorithm

Let \mathcal{H} be the class of monotone disjunctions over $\{0,1\}^n$.

Algorithm: Winnow

Initialize the weights $w_1, ..., w_n$ of the variables to 1.

Given an example $x = \{x_1, ..., x_n\}$

if
$$(w_1x_1 + w_2x_2 + ... + w_nx_n \ge n)$$
 output 1

output 0 otherwise.

If the algorithm makes a mistake:

(a) If the algorithm predicts negative on a positive example, then for each x_i equal to 1, double the value of w_i .

(b) If the algorithm predicts positive on a negative example, then for each x_i equal to 1, cut the value of w_i in half. Repeat

The Winnow Algorithm learns the class of disjunctions in the Mistake Bound model, making at most 2 + 3r(1 + lgn) mistakes when the target hypothesis is a disjunction of r variables.

Online Learnability

- Littlestone's Dimension
- Standard Optimal Algorithm
- VC Dimension

Unrealizable Case

- Agnostic learning.
- Competitive with the best hypothesis in \mathcal{H} .
- *Regret* of the algorithm.

The regret of the algorithm relative to h when running on a sequence of T examples is defined as:

$$Regret_{T}(h) = \sum_{t=1}^{T} l(p_{t}, y_{t}) - \sum_{t=1}^{T} l(h(x_{t}), y_{t})$$

The regret of the algorithm relative to a hypothesis class ${\cal H}$ is:

$$Regret_{T}(\mathcal{H}) = max_{h \in \mathcal{H}}Regret_{T}(h)$$

Goal: algorithm with regret sublinear in T.

Cover's Impossibility Result

• No algorithm can obtain regret sublinear in T even if $|\mathcal{H}| = 2$.

Solution: Randomize

Predicting from Expert Advice

- Learner has to choose from the advice of *d* given experts.
- Pay cost corresponding to the advice of the expert.
- Competitive with the cost of best fixed expert.
- Randomize choice and get expected regret.

Weighted Majority

- 1. Initialize the weights $w_1, ..., w_n$ of all experts to 1.
- 2. Given set of predictions $\{x_1, ..., x_n\}$, output 1 if

$$\sum_{i:x_i=1} w_i \ge \sum_{i:x_i=0} w_i$$

output 0 otherwise.

3. Penalize each mistaken expert by multiplying its weight by 1/2. Goto 2.

Theorem

The number of mistakes M made by the Weighted Majority algorithm described above is never more than 2.41(m + lg(n)), where m is the number of mistakes made by the best expert so far.

Multi Armed Bandits

- Partial information.
- Adversarial or stochastic.
- Exploration-exploitation trade-off.

Online Convex Optimization

- Perceptron algorithm (must define correct hypothesis class)
- Convexification techniques: randomization surrogate loss functions
- Follow-the-leader
- Online Gradient Descent