
CSC2420: Algorithm Design, Analysis and Theory
Spring 2019

Allan Borodin

January 17, 2019

1 / 21

Week 2

Announcements:

There is one question so far on Assignment 1 and later today I will
add a second question (or maybe more).

Can we reschedule next weeks lecture sometime M, T, W??

Todays agenda

The priority model as a model for greedy/myopic algorithms

Some inapproximations with respect to priority algorithms; weighted
interval selection.

Greedy algorithms for the set packing problem and the s-set packing
problem.

k + 1 claw-free graphs.

The natural vertex cover and set cover greedy algorithms.

Priority algorithms with revocations.

Chordal graphs; perfect elimination ordering.

Priority stack algorithms.

2 / 21

The priority algorithm model and variants

As part of our discussion of greedy (and greedy-like) algorithms, I want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms we mentioned? With the exception of
Huffman coding (which we can also deal with), like online algorithms,
all these algorithms consider one input item in each iteration and
make an irrevocable “greedy” decision about that item..
We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dk

about each input item Ik (e.g. on what machine to schedule job Ik in
the makespan case) such that {(I1,D1), . . . , (In,Dn)} constitutes a
feasible solution.
For online problems (where the adversary determines the ordering of
input item), the abstract problem formulation is called request-answer
games. Note: The line-search problem and other online navigational
search problems are not request-answer games.

3 / 21

Priority model continued

Note: that a problem is only fully specified when we say how input
items are represented. (This is usually implicit in an online algorithm.)

We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn’t always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation.

4 / 21

Greedy decisions and priority algorithms continued

For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)
If we do not insist on greediness, then priority algorithms would best
have been called myopic algorithms.
We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).
The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.
We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.

5 / 21

The priority model definition

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider deterministic fixed order priority algorithms. Since I
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

Initially there is some (possibly infinite) set J of potential inputs.
The algorithm chooses a total ordering π on J . Then the adversary
selects a subset I ⊂ J of actual inputs so that I becomes the input
to the priority algorithm. The input items I1, . . . , In are ordered
according to π.

In iteration k for 1 ≤ k ≤ n, the algorithm considers input item Ik
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dk about this input item.

6 / 21

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering π of J
Let I ⊂ J be the input instance
S := ∅ % S is the set of items already seen
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
I := I \ S
Ii := minπ{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}

end

Figure: The template for a fixed priority algorithm

7 / 21

Some comments on the priority model

A special (but usual) case is that π is determined by a function
f : J → < and and then ordering the set of actual input items by
increasing (or decreasing) values f (). (We can break ties by say using
the input identifier of the item to provide a total ordering of the input
set.) N.B. We make no assumption on the complexity or even the
computability of the ordering π or function f .
NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
input identifier of the item.
As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global
information.)

8 / 21

The adaptive priority model template

J is the set of all possible input items
I is the input instance
S := ∅ % S is the set of items already considered
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
decide on a total ordering πi of J
I := I \ S
Ii := min≤πi

{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}
J := J \ {I : I ≤πi Ii}
% some items cannot be in input set

end

Figure: The template for an adaptive priority algorithm

9 / 21

Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

1 For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights vj = |fj − sj |), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

2 For the knapsack problem, no priority algorithm can achieve a
constant approximation. We note that the maximum of two greedy
algorithms (sort by value, sort by value/size) is a 2-approximation.

3 For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

4 As previously mentioned, for deterministic fixed order priority
algorithms, there is an Ω(logm/ log logm) inapproximation bound for
the makespan problem in the restricted machines model.

10 / 21

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be naturally viewed an
alternating sequence of actions;

The adversary eliminates some possible input items
The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset I of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm.

Unless stated otherwise we usually analyze randomized algorithms (for any
type of algorithm) with respect to an oblivious adversary.

11 / 21

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be naturally viewed an
alternating sequence of actions;

The adversary eliminates some possible input items
The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset I of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm.

Unless stated otherwise we usually analyze randomized algorithms (for any
type of algorithm) with respect to an oblivious adversary.

11 / 21

Interval selection and greedy priority algorithms

To illustrate the limitations of greedy algorithms (as modeled by priority
algorithms), we consider the (weighted) interval selection problem. Here
we are given n intervals I1, . . . , In where intervals are given by Ij = [sj , fj).
Ij and Ik are conflicting if Ij ∩ Ik 6= ∅. (I use half closed, half open
intervals to indicate that we allow intervals to intersect just at an
endpoint.) Each interval Ij has a weight or value vj . The goal is to find a
subset of non-conflicting intervals so as to maximize the sum of the values
of the selected intervals.

It is well known that for the unweighted case (i.e., when vj = 1 for all j)
that the fixed order greedy priority algorithm Earliest Finishing Time
(EFT) is optimal.

12 / 21

Priority algorithms for one machine interval
selection continued

1 For proportional values (i.e., when vj = fj − sj for all j), the Longest
Processing Time (LPT) greedy algorithm achieves a 3-approximation
which can be proven by a charging argument. This is essentially the
best possible for any deterministic priority algorithm as shown onthe
following slide.
Note: Perhaps surprinsingly for m = 2 machines, there is a priority
2-approximation algorithm. This algorithm can be re-stated to
provide a randomized priority 2-approximation.

2 For arbitrary values {vj}, no deterministic priority algorithm can
achieve a constant approximation. More precisely, if we let δj =

vj
fj−sj

and ∆ =
maxj δj
minj δj

, then no deterministic priority algorithm can achieve

ratio better than ∆. The LPT algorithm yield a 3∆ approximation for
arbitrary profits.
Note: If mini δi and maxi δi are known then there is a randomized
priority O(log ∆) approximation.

13 / 21

A simple priority algorithm inapproximation for
proportional profit

The nemisis sequence consists of long and short jobs. The long jobs are
depicted in the figure. There is a small ε overlap between intervals on the
top and bottom. In addition for each long interval of length (= value) vi ,
there are three short intervals of length vi−2ε

3 included in that long
interval. The adversary will be able to create a subset of these intervals to
force a bound arbitrarily close to 3 (for sufficiently small ε and large q).308 A. Borodin, M. N. Nielsen, and C. Rackoff

Fig. 1. The “long jobs” from the worst case sequence for any priority algorithm for m = 1.

other long jobs by ε except for the two jobs at the end, which only overlap one long
job each (also by ε). Additionally, for each job Ji of size pi , the adversary gives three
non-intersecting short jobs of size (pi − 2ε)/3, all included within the interval of job Ji

and not intersecting the adjacent long jobs. The short jobs relating to job Ji will clearly
all fit together on one machine.

The algorithm assigns priorities to the jobs, and we claim that the job with the highest
priority, say J1, must be scheduled even though the algorithm is not greedy. If the first
job is not scheduled the algorithm will not be competitive on the sequence consisting
of J1 alone. The adversary changes the sequence such that all jobs not intersecting J1

are removed. The optimal algorithm will reject J1 and schedule all remaining jobs.
Depending on the size of job J1 there are four cases to consider:

• Case 1: J1 is a short job.
• Case 2: J1 has size = profit 1.
• Case 3: J1 has size j , for 1 < j < q .
• Case 4: J1 has size q.

If Case 1 occurs and the algorithm accepts a small job of profit = size (pi − 2ε)/3,
OPT will get a job of profit pi , and the ratio is at least pi/((pi − 2ε)/3).

If Case 2 occurs, OPT will get one long job of profit 2 and three small jobs with a
total profit 1− ε. The ratio is (2 + (1− ε))/1.

If Case 3 occurs, OPT will get two long jobs of profits j − 1 and j + 1 and three
small jobs with a total profit j − 2ε. The ratio is ((j − 1) + (j + 1) + (j − 2ε))/j .

If Case 4 occurs, OPT will get two jobs of profit q − 1 and small jobs with a total
profit q − 2ε. The ratio is (2(q − 1) + (q − 2ε))/q .

In all cases the ratio is arbitrarily close to 3 by making ε sufficiently small and q
sufficiently large.

COROLLARY 1. The lower bound of Theorem 3 holds even if the algorithm knows n in
advance. That is, the ordering and decision function of the algorithm can also depend
on n.

PROOF. The simplest idea would be to augment the set S used in the basic argument to
include sufficiently many copies of some small interval. This would essentially suffice
for greedy algorithms since we need only consider what the algorithm does on S, safely
ignoring the rather worthless small jobs. However, for non-greedy algorithms, the algo-
rithm can use the presence of these small jobs (giving them the highest priority) to infer
the true size of the input set and adjust its behavior accordingly. We take the following
approach. In the basic framework for Theorem 3, we have a 3-approximation lower
bound using a set S of potential inputs and the adversary uses at most six jobs (intervals)
in deriving this lower bound. In the lower bound for the new model, the adversary will

Figure: The long jobs in the nemesis input

The first interval (which must be selected) considered by the priority
algorithm will allow the adversary to remove enough items to force the
bound. There are four cases: I1 is a short interval, I1 has length 1, I1 has
length ` for 1 < ` < q, and I1 has length q.

14 / 21

Extensions of the priority order model

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and one irrevocable decision). The
following online or priority algorithm extensions can be made precise:

Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to permanently discard previously accepted
intervals (while always maintaining a feasible solution), then we can
achieve a 4-approximation. (but provably not optimality).
While the knapsack problem cannot be approximated to within any
constant, we can achieve a 2-approximation by taking the maximum
of 2 greedy algorithms. More generally we can consider some “small”
number k of priority (or online) algorithms and take the best result
amongst these k algorithms. The partial enumeration greedy
algorithm for the makespan and knapsack problems are an example of
this type of extension.

15 / 21

Extensions of the priority order model continued

Closely related to the “best of k online” model is the concept of online
algoitthms with “advice”. (One could also study priority algorithms
with advice but that has not been studied extensively.) There are two
advice models, a model where one measures the maximum number of
advice bits per input item, and a model where we are given some
number ` of advice bits at the start of the computation. The latter
model is what I will mean by “online with advice.” Online with `
advice bits is equivalent to the max of k = 2` online model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.
There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT model to be discussed later).

16 / 21

Extensions of the priority order model continued

Closely related to the “best of k online” model is the concept of online
algoitthms with “advice”. (One could also study priority algorithms
with advice but that has not been studied extensively.) There are two
advice models, a model where one measures the maximum number of
advice bits per input item, and a model where we are given some
number ` of advice bits at the start of the computation. The latter
model is what I will mean by “online with advice.” Online with `
advice bits is equivalent to the max of k = 2` online model.
NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.
There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT model to be discussed later).

16 / 21

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for biparitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why?

What information should we be allowed to convey between
passes?

17 / 21

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for biparitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we be allowed to convey between
passes?

17 / 21

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant s ≥ 3, there is an
Ω(s/ log s) hardness of approximation assuming P 6= NP.
We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority.18 / 21

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt)

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

19 / 21

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.
For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do
better than min{m, n}.

20 / 21

Improving the approximation for set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is asymptotically the best possible approximation assuming NP 6= ZPP.
21 / 21

	Week 2

