
CSC2420: Algorithm Design, Analysis and Theory
Spring 2019

Allan Borodin

March 21, 2019

1 / 37

Week 10

Announcements:

If you did not get an acknowledgement from me about your project
please let me know. I think I only have 6 project proposals thus far
and I want to make sure that I haven’t missed any.

I plan to add all or most of the remaining assignment problems by
tomorrow.

2 / 37

Todays agenda

Todays agenda: Mainly today will be a brief introduction to a number of
topics filling in some additional information in the following week(s).

The ROM model and some applications.

Walk Sat type algorithms

Sublinear time algorithms

Streaming algorithms

3 / 37

The random order model

We left off last lecture just mentioning the ROM model. As mentioned,
the ROM model was first introduced in the classical secretary problem. It
has now been adopted to many problem settings, and has led to a number
of related topics.

There is a basic observation (next slide) that was made by Karande,
Mehta and Tripathi (2011) in the context of studying the performace of
the Ranking algorithm in the ROM model. This observation applies more
generally to any “online problem”.

Note: Unfortunatley, when we say “online”, most people mean “online”
where the input sequence is given by an adversary (i.e. worst case
analysis). But here I mean “online algorithm” in the sense that input items
arrive one at a time and the algorithm must make an immediate decision
for each item and where the input sequence can come from any external
(without the algorithm being able to control the sequence) source.

4 / 37

The ROM and i.i.d input models

As we mentioned previously, in the ROM model an adversary chooses a set
of inputs , say {I1, I2, . . . , In} and then “nature” creates a random input
sequence aπ(1), api(2), . . . , aπ(n) where π is chosen with uniform probability
over the set of all n! permutations.

In the i.i.d. model, the input is generated by randomly and independently
selecting each input item Ij from a distribution D.

Fact (Karande et al): Suppose algorithm A for an online problem P has
(expected) competitive ratio c with respect to the ROM model. (Note:
that this is the worst ratio over any possible set of input items.) Then A
achieves competitive ratio at least c for any (unknown) distribution.

5 / 37

Proof of the basic “ROM imples i.i.d ” fact

The proof is remarkably simple given how useful is this fact. Consider the
algorithm on problem instances consisting on n input items. Partition the
input instanes into classes, each of size n! such that the class is made up
of the n! ways to permute some set of input items. Each input sequence in
a class occurs with the same probability. Thus each class becomes an
instance of the random order model and hence algorithm A has
competitive ratio at least c on each class. We csn then take the
expectation over the differnent clssses to obtain the desired result.

In particular then, for the online bipartite matching problem, since the
Ranking algorithm can be viewed as a simple deterministic greedy
algorithm (call it algorithm G in the ROM model, it folows that G has
competitive ratio 1− 1

e in the unknown i.i.d. input model.

Here the greedy algorithm G assumes the offline nodes have some
(implied) ordering π and G assigns each online node to the first (wrt π)
offline node (if any) that is still not yet matched.

6 / 37

What is known about the bipartite matching
problem in the ROM, known and unknown i.i.d.
models

We know that any positive (existance of a good ratio) ROM result implies
the same for the unknown i.i.d. input model and this in turn implies a
ratio for the known the i.i.d model. And, of course, the contrapositive tells
us that any inapproximations for the known i.i.d. model imply the same
negative result for the ROM model.

For i.i.d. inputs , there is a distinction between integral types (where the
expected number of arrivals of any given input type is integral) vs arbitrary
types.

At this point in time, as far as I know, the best results in the unknown
i.i.d. model follow from what is known for the ROM model. However,
much better competitive ratios have been shown for the known i.i.d. input
model especially as regards integral arrival rates.

7 / 37

What is known about the bipartite matching
problem in the ROM and known i.i.d. models

In the ROM model, Mahdian and Yan (2011) show that the
(randomized) Ranking algorithm obtains the ratio .696 improving
upong the fist result in this regard by Karande et al. who also show
that ranking is no better that .727 in the ROM model.
The best known i.i.d. result (for non-integral arrival rates) is .702 by
Manshadi et al (2012) who also have the best inappoximation .823
for any BMM algorithm in the known i.i.d. model.
For the known i.i.d. input model with integral arrival rates, Brubach
et al (2016) establish a .7299 competitive ratio slightly improving
upon the .7293 result due to Jaillet and Lu (2013). Furthermore, the
.7299 result holds for the (offline) vertex weighted version of the
problem.
Finally, with regard to known i.i.d., integral types, Brubach et al have
a .705 competitve ratio for the general edge weighted version of
bipartite matching which substantially beats the previous best .668 by
Hauptler et al (2011). 8 / 37

The classical secretary problem

As stated, there are n candidates (n is known) who arrive (in the ROM
model). Each candidate has a positive value which is revealed upn arrival.
Here first is the algorithm that achieves a 1

e bound on the probability that
the algorithm will choose the candidate having the best value.

The secretary problem algorithm

i := 1
best := 0
While i ≤ n/e

If bi > best then best := vi
i := i + 1

EndWhile
While i ≤ n − 1

If vi > best then return vi and halt
Return vn % This is the case where we did not find a value

better than the best value in the first n/e candidates.

9 / 37

The approximation bound

The approximation bound

The “sample and take next best” algorithm chooses the best value with
probability at least 1

e for all input instances in the ROM model. It follows
that the expected value of the algorithm is at least that fraction of the
best value.

Given how classical and interesting is this result, there are many proofs of
the result as well as many variants. The history of the problem is by its
self quite fascinating.
Here is a very simple argument (but not a tight analysis) for a weaker
bound. Instead of sampling n/e candidates, sample n/2 candidates and
then choose the first candidate in the second half that is better than the
best in the first half.

Claim: The probability that this algorithm chooses the best candidate is at
least 1

4 .

10 / 37

Proof of the weaker 1
4 bound

Proof of the weak bound: Given the random ordering of the inputs, with
probability 1

4 the second best candidate is in the first n/2 inputs and the
best candidate is in the last n/2 candidates.

Why is this argument not a tight analysis?

What we were saying in the above argument is the following: If we let A1

be the event that second best candidate is in first half and
B1 is the event that best candidate is in the second half.
Then the above was almost a precise bound for

Prob[A1 ∧ B1] = Prob[A1|B1] · Prob[B1]

But this is actually an underestimate as thee are other events where we
will obtain the maximum value candidate. For example, let A2 be the
event that the third best candidate occurs in the first half, and B2 be the
event that the best candidate and the second best occur in the second half
with the second best coming after the best. And, of course, we could
continue this with more events in which the simple algorithm would
succeed in choosing the best candidate.

11 / 37

Proof of the weaker 1
4 bound

Proof of the weak bound: Given the random ordering of the inputs, with
probability 1

4 the second best candidate is in the first n/2 inputs and the
best candidate is in the last n/2 candidates.

Why is this argument not a tight analysis?

What we were saying in the above argument is the following: If we let A1

be the event that second best candidate is in first half and
B1 is the event that best candidate is in the second half.
Then the above was almost a precise bound for

Prob[A1 ∧ B1] = Prob[A1|B1] · Prob[B1]

But this is actually an underestimate as thee are other events where we
will obtain the maximum value candidate. For example, let A2 be the
event that the third best candidate occurs in the first half, and B2 be the
event that the best candidate and the second best occur in the second half
with the second best coming after the best. And, of course, we could
continue this with more events in which the simple algorithm would
succeed in choosing the best candidate. 11 / 37

The idea of the 1
e bound

In the analysis, we don’t worry about picking the last element if we run
out of candidates.

The first observation is that the the optimal solution is obtained by
considering the the optimal stopping rule in the followng online
scenario: An algorithm has to decide on when to stop considering
candidates amongst the first i seen based on just the relative value of
the i th canddidate having seen the first i canddiates with no
information about the future.

In the random order model we then need to understand
pi = Prob[selecting the best candidate at position i]

This is equal to the probability:
Prob[i picked | being best so far] ·Prob[best so far]
The first Probability is at most (1−

∑
j<i pj)

The second probability is 1/i .

That is, we need to : Maximize ipi
subject to pi ≤ (1−

∑
j < ipj)

1
i .

12 / 37

The idea of the 1
e analysis continued

This was just the primal LP we gave last lecture.
Some solutions then analyze this LP and its dual and show that in the
limit as n→∞, the optimal solution is n/e.

Some other solutions just more directly anaylze the inequality and use
the approximation pi = i

∫ n
i

1
t dt = −i ln i and the differentate to

obtain the solution.

So far I haven’t found a purely combinatorial analysis. However, the
following extension to edge weighted bipartite matching does provide
a combinatorial analysis for the expected weight of a solution.
Aside: Since we are considering the worst case ROM result (i.e.
over all inout]it sets) this is also a tight bound on the expected
value. Namely, we can choose an input set where the value of the
best candidate is arbitrarily large while the other candidates have
arbitrarily small values.

13 / 37

Extending the expected bound to the edge weighted
bipartite matching problem

The secretary problem can be seen as a special case of the edge weighted
bipqrtite matching problem where there is only one offline node.

For the ROM model, Kesselheim et al (2013) extend the sampling idea in
the secretary problem to obtain the same 1

e approxination of the optimal
weight solution.

An Optimal Online Algorithm for Weighted Bipartite Matching 593

w(e) ∈ R≥0 of its incident edges. Most importantly, the vertices in L are revealed
online and in random order. The algorithm always has to either assign the current
vertex to one of its unmatched neighbors in R, or decide to leave it unassigned.

Our algorithm is a generalization of the classical approach to the secretary
problem. There, a constant fraction of the candidates is ignored. Then, when an
online candidate arrives that is better than all previous ones, it is selected. We
also start by sampling a constant fraction of the vertices on the left-hand side.
Afterwards, whenever a new vertex is presented to the algorithm, we compute
an optimum solution on the revealed part of the graph. If, in this local solution,
the current vertex on the left-hand side is assigned to an unmatched vertex, we
add this edge to our matching.

Algorithm 1. Bipartite online matching
Input : vertex set R and cardinality n = |L|
Output: matching M
Let L′ be the first ⌊n/e⌋ vertices of L;
M := ∅;
for each subsequent vertex ℓ ∈ L− L′ do // steps ⌈n/e⌉ to n

L′ := L′ ∪ ℓ;
M (ℓ) := optimal matching on G[L′ ∪R]; // e.g. by Hungarian method
Let e(ℓ) := (ℓ, r) be the edge assigned to ℓ in M (ℓ);
if M ∪ e(ℓ) is a matching then

add e(ℓ) to M ;

For convenience of notation, we will number the vertices in L from 1 to n in
the (random) order they are presented to the algorithm. Hence, we will use the
variable ℓ synonymously as an integer, the name of an iteration and the name
of the current vertex.

Lemma 1. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, r) assigned to v in M . And let
OPT be the value of a maximum-weight matching in the full graph G. For the
vertices ℓ ∈ {⌈n/e⌉, . . . , n} we have,

E [Aℓ] ≥
⌊n/e⌋
ℓ− 1 · OPT

n
.

Proof. First, we will show that the expected weight of e(ℓ), i.e. of the edge
assigned to vertex ℓ in the matching M (ℓ), is a significant fraction of OPT .
Then, we will analyze the probability of adding this edge to the matching M .

The proof relies on the fact that in any step k of the algorithm the choice of
the random permutation up to this point can be modeled as a sequence of the
following independent random experiments: First choose a set of size k from L.
Then determine the order of these k vertices by iteratively selecting a vertex at
random and removing it. We need this interpretation to exploit the randomness
in each of these experiments separately.

14 / 37

Proof sketch of the Kesselheim et al extension to
edge weighted bipartite matching

Aside: First note that L is the set of online nodes and in other papers, L
is often the offline nodes.
As discuussed in their paper, they way they think about the random choice
of an online node occuring in the kth iteration (wrt to the random
permutation of the ROM nodes in L) is that a a random set of size k is
chosen and then iteratively each node is drawn from this set and removed.

They then want to determine a bound on the contribution of the `th online
node for ` ∈ {dn/ee, . . . , n}. Denote this by E[A`].

Main lemma

E[A`] ≥ bn/ec`−1 ·
OPT
n

15 / 37

Continution of the n
e proof for edge weighted

bipartite matching

Let r be the offline node to which ` is matched (and let this matching
edge be e` in the optimal offline matching for M` using the notation in the
algorithm. The proof of the main lemma shows that the probability

1 Prob[e`] will be available is at least bn/ec`−1 .

2 If chosen the expected value of e` ≥ OPT
n .

Given the previous main Lemma, the bound for the expected value for the
matching M computed by the Kesselheim et al algorithm is

E[w(M)] ≥
n∑

`=dn/ee

bn/ec/e
`− 1

· OPT
n

=
bn/ec
n

n−1∑
`=dn/ee

1

`
· OPT

Some easy approximations then show that E[w(M)] ≥ 1
e −

1
n .

16 / 37

Many other extension of the basic secretary problem

There are many other extenions of the secretary problem as well as other
application of the ROM model to other types of problems.

Matroid secretary problems. The most basic matroid is the uniform
matroid (i.e. choose k candidates for some k)

Knapsack secretary

A related set of problems is to have the input items generated from a
known i.i.d. stochastic setting or more generally from an i.d. (i.e.
independent but not necessarily identical) setting where the i th candidate
is drawn from a distribution Di . There are a variety of such problems
which are called prophet inequality problems.

17 / 37

Walk-Sat type algorthms

Continuing the theme of conceptually simple algorithms, I want to mention
algorithms based on random walks in a graph for the k-SAT problem. In
some sense the basic idea is close to the random changing of variables.

We already saw that randomly settng the propositional variables in a
propositional formula can wind up satifying a large number of clauses
especially clauses with many literals.

But the same naive idea is very unlikely to satisfy all clauses even if the
formula is satisfiable. For exact k-CNF, the expected number of clauses
satisfied will be a 2k−1

2k
fraction of all clauses and the probability of saifying

all clauses will drop exponentially with m, the number of clauses.

But lets start with a random truth assignment (or even start with an
arbutrary truth assignment). What variables might we want to change if
our initial solution is not a satisfying assignment?
Let’s start with a tractable case, 2-SAT which we we know has a
polynomial time algorithm. But note that Max-2-SAT is NP-hard.

18 / 37

The random walk algorithm for 2-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .

There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ . If F (τ) is true then we are
done; else find an arbitrary unsatisfied clause C and randomly choose
one of the two variables xi occurring in C and now change τ to τ ′ by
setting τ ′(xi) = 1− τ(xi).

19 / 37

The expected time to reach a satisfying assignment

When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)

As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.

It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is O(n2).

20 / 37

An elementary proof

Let Ti+1,i be the expected time to go from node i + 1 to node i .
We have Ti+1,i ≤ 1

2 · 1 + 1
2 ·
(
Ti+2,i+1 + Ti+1,i

)
Rearranging we have Ti+1,i ≤ 1 + Ti+2,i+1

This implies Ti+1,i ≤ (n − i) since Tn,n−1 = 1.

Thus Tn,0 ≤ Tn,n−1 + · · · · · ·+ T1,0 ≤ n(n−1)
2 .

Even though we have a proof, it is still instructive to see how the random
walk bound on the line follows from a more general analysis of random
walks on a finite connected graph.

21 / 37

A proof using the basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

22 / 37

Stationary distributions

Define qt = (qt1, q
t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi . 23 / 37

Back to random walks on graphs

Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.

Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).

Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula.

24 / 37

Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). Or we could view the approach as
a local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

25 / 37

Schöning’s k-SAT algorithm for k ≥ 3

The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another initial random starting assignment. The result is a one-sided error
alg running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
(2− 2

k)−n. The expected time is then the inverse of this probability.

26 / 37

Skecth of the claim

We will sketch the idea along the lines of the elementary proof for the case
of k = 2 glossing over some details.

Assume that the formula is satisfiable. So then again we can think of the
analysis of finding some fixed satisfying assignment τ (where it can only
help if we stumble across another satisfying assignment before hitting τ .

Now for a given starting assignment, let pi be the probability that starting
at node i , a random walk will eventually reach node 0 (i.e. and hence find
τ). Now the thing we are glossing over is that we are ending the random
walk process in 3n steps and not letting it run indefinitely. The claim is
that this will not alter the probability substantially.

27 / 37

Sketch of claim proof continued

We can replace the inequalities by equalites in bounding pi and by the
same reasoning as in the elementary proof, we get the recurrence:

pi+1 =
1

k
pi−1 +

k − 1

k
pi+1

Rewriting:

pi+1 =
k

k − 1
pi −

1

k − 1
pi−1

So now we have a recurrence that we want to solve by induction. But we
need a basis for the recurrence and in particular we need p1.

Recognizing that going from node 2 to node 1 is the same as going from
node 1 to node 0, we get p1 = 1

k + k−1
k (p1)2

One of the roots of this quadratic equation is 1
k−1 which leads us to try

the recurrence pi = 1
(k−1)i . This is easily then shown to hold by induction.

28 / 37

Finishing sketch of proof of claim

This is the anslysis for a given initial assignment at node i . We need to
average this over all possible assignments which is then

n∑
i=0

(
n

i

)
1

(−1)i
= (2− 2

k
)−n

More general, we may want to solve k variable CSP’s with d-ary variables.

A similar anaysis establishes a Õ
(
d(1− 1

k)
)n

time complexity.

29 / 37

How good are these bounds for k-SAT?

For 3-SAT, the Schöning bound is Õ(43)n.

It is a basic open problem as to whether or not we can achieve an for some
a < 4

3 (or for some a substantially better than 4
3 .

A more basic question is whether or not 3-SAT requires an for some a > 1?

The Exponential Time Hypothesis (ETH) states that an for some a > 1 is
necessary.

We also observe that as k increases the base of the time complexity is
limiting to 2. The basic question for arbitrary CNF formulas (i.e. arbitrary
k) is whether or not time complexity can be an for some a < 2.

The Strong Exponential Time Hierarchy (SETH) states that SAT cannot
be done in time an for a < 2.

These are much stronger assumptions thn P 6= NP and (perhaps
surprisingly) relates to the topic of fine-grained complexity.

30 / 37

Sublinear time and sublinear space algorithms

We now consider other contexts in which randomization is (with few
exceptions) provably essential. In particular, we will study sublinear time
algorithms and then the (small space) streaming model.

An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. As such an algorithm must provide an answer
without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.

The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.

The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.

This topic will take us beyond search and optimization problems.

31 / 37

A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi)
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time (and
hence sublinear in n2, the number of distances) algorithm; namely,
choose an arbitrary point x ∈ M and compute D = maxj d(x , xj). By
the triangle inequality, D is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an implicitly
represented distance function (such as d dimensional Euclidean
space), the points could be explicitly given as inputs and then the
input size is n and not n2.

32 / 37

Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

We will consider the following examples:

1 Finding an element in an (anchored) sorted linked list
[Chazelle,Liu,Magen]

2 Estimating the average degree in a graph [Feige 2006]
3 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
4 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.

33 / 37

Finding an element in an (anchored) sorted list

Suppose we have an array A[i] for 1 ≤ i ≤ n where each A[i] is a pair
(xi , pi) with x1 = min{xi} and pi being a pointer to the next smallest
value in the linked list. That is, xpi = min{xj |xj > xi}. (For simplicity
we are assuming all xj are distinct.)
We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = xj .

A
√
n algorithm for searching in an anchored sorted linked list

If x < x1, then x is not in the list.
Let R = {ji |0 ≤ i ≤

√
n} be

√
n randomly chosen indices plus the index 1.

Access these {A[ji]} to determine k such that xk is the largest of the
accessed array elements less than or equal to x .
From A[k], search forward 2

√
n steps in list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when x ∈ {A[i]}) will fail to
return j such that x = A[j] with probability at most 1/2.

34 / 37

Estimating average degree in a graph

Given a graph G = (V ,E) with |V | = n, we want to estimate the
average degree d of the vertices.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/ε random subsets Si of V each of size (say)
√
n
ε3

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

35 / 37

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But we will show that with
high probability these estimates will not be too bad. More precisely, we
need:

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄] ≤ 1− ε
2

The probability bound in Lemma 2 is amplified as usual by repeated trials.
For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

36 / 37

End of Week 10 lecture

We ended here having just introduced sublinear time algorithms.

Next week we will continue the discussion of sublinear time and then move
on to streaming algorithms. I will soon post an advance set of slides for
Wweek 11.

37 / 37

	Week 10

