
CSC 2420 Spring 2019, Assignment 1
Due date: February 25 (the last day to drop a graduate course without

penalty)

It is certainly preferable for you to solve the questions without consulting
a published source. However, if you are using a published source then you
must specify the source and you should try to improve upon the presentation
of the result.

If you would like to discuss any questions with someone else that is fine
BUT at the end of any collaboration you must spend at least one hour playing
video games or watching two periods of Maple Leaf hockey or maybe even
start reading a good novel before writing anything down.

Unless stated otherwise, all subquestions (1(i), 1(ii), 1(iii), 1(iv), etc) are
worth 10 points. If you do not know how to answer a question, state “I do
not know how to answer this (sub) question” and you will receive 20% (i.e.
2 of 10 points) for doing so. You can receive partial credit for any reasonable
attempt to answer a question BUT no credit for arguments that make no
sense.

In class I can clarify any questions you may have about this assignment.

1

1. Consider the makespan problem for the identical machines model with
m machines. We sketched the proof that the worst case competitive
ratio

CGreedy

COPT
of the natural online greedy algorithm is ≤ 2 − 1

m
. We

also gave an example showing that this ratio is “tight” (i.e. cannot be
improved) for this algorithm.

(i) Finish the proof that was sketched in Lecture 1; that is, use the
fact that COPT ≥

∑
1≤i≤n pi/m for any sequence of n input jobs

and COPT ≥ pi where job Ji has “load” pi.
Note: You can easily find the proof of this result but you should
try to solve it without searching for a solution.

(ii) Argue for m = 2 (resp. m = 3) machines that any (not necessarily
greedy) online algorithm would have competitive ratio no better
than 3

2
(resp. 5

3
) so that the natural greedy online algorithm

approximation is tight for m = 2 and m = 3 for any online
algorithm.

(iii) Consider greedy online algorithm for the makespan problem but
now in the random order ROM model. Show that for any ε >
0, there exists a sufficiently large m such that the (expected)

approximation ratio
E[CGreedy]

COPT
≥ 2 − ε. Here the expectation is

with respect to the uniform distribution on input arrival order.
If you cannot prove the stated claim then prove any ratio greater
than 1. Hint: generalize the nemesis sequence for the adversarial
competitive ratio.

(iv) Consider the LPT algorithm for the makespan problem. The LPT
aproximation ratio is 4

3
− 1

3m
. The outline of the proof is as follows:

i. Without loss of generality, the job causing the makespan is
pr, the job having minimum processing cost.

ii. Recall the two facts about bounds for OPT that was used
to prove the approximation for the online Greedy algorithm.
That is, the makespan is always at least maxi pi and at least∑m

i=1 Ti
m

where Ti is the makespan (i.e., completion time) of
machine i.

iii. Use these two facts to show that if the stated approximation
bound does not hold, then pr > OPT/3.

iv. It follows that OPT can only schedule at most 2 jobs per
machine.

2

v. Show how to transform an OPT schedule into the LPT sched-
ule without increasing the makespan and thereby deriving a
contradiction.

Fill in the details for the above proof outline. .

2. Consider the following algorithm for the set packing problem. Let
S = {S1, S2, . . . , Sn} be the input instance with Si ⊆ {1, 2, . . . ,m}.

• Partition S = S1 ∪ S2 where S1 = {Si : |Si| ≤
√
m}.

• Let R1 be the result of running the greedy algorithm Greedywt on
S1 and let R2 be the set having the maximum weight of sets in
S2.

• Return the better of R1 and R2.

Show that 2
√
m is a bound on the approximation ratio of this set

packing algorithm.

3. This question concerns local search for the exact Max-2-Sat problem
where the input is a CNF formula with exactly 2 literals per clause.
The goal is to maximize the number (or the total weight) of clauses
that can be satisfied by some truth assignment. Khanna et al consider
the locality gap achieved by oblivious and non-oblivious local search.
(See week 5 lecture notes and, in particular, the proof of the 2

3
locality

gap for the 1-flip neighbourhood oblivious search.) As suggested by
Khanna et al, one can also obtain a locality gap of 3

4
by an oblivious

local search algorithm that defines the neighbourhood of a solution
(i.e. truth assignment) to include flipping any single variable and also
flipping all variables. Modify the 2

3
locality gap result to obtain the

improved locality gap for this larger neighbourhood.

3

4. Consider the minimum spanning tree (MST) problem. Namely, lets say
given a connected graph G = (V,E) with weights w : E → R, find a
spanning tree T ⊆ E minimizing

∑
e∈T w(e). The generalization to a

weighted matroid M = (U,w) with w : U → R is to find a basis B ⊆ U
so as to minimize

∑
e∈B w(e).

(a) Why is the MST (or its generaliztion to a minimum weight ba-
sis) problem equivalent to the maximium weight spanning tree
problem (resp. to maximize

∑
e∈B w(e))?

(b) Consider the following reverse greedy algorithm for finding a max-
imum weight basis in a matroid M = (U,w) .

Let m = r(M) where r(M) is the rank of M .
S := U
While |S| > m

remove from S a minimum weight element x such that
r(S \ {x}) = m

End While

Claim: The resulting S will be a maximum weight basis.

Restate the reverse greedy algorithm for the minimum (or maxi-
mum) spanning tree problem.

(c) Prove that the reverse greedy algorithm will always produce a
maximum weight basis in a matroid.

5. The following questions concern maximizing a monotone submodular
function subject to a matroid constraint.

(a) Prove the two facts about monotone submodular functions that
appear on slide 40 of the week 5 lecture slides.

(b) Show precisely where monotonicity is being used in the proof of the
approximation ratio. Conclude that if the submodular function f
was α monotone (for α ≥ 1) then the 1-exchange algorithm would
provide a 1

2α
approximation. Here I define α monotone by the

condition:
f(S) ≤ αf(T) ∀S ⊆ T

.

4

6. The following question is an alternative to the previous question and
concerns matroids. As stated in class, you only have to do one of this
question and the previous question. Some bonus grades for reasonable
solutions to both questions.

Let G = (V,E,w1, w2) be a bipartite graph where the V = U1 ∪ U2

and wi : Ui → R for i = 1, 2. We will be interested in computing a
matching in G to maximize certain objectives.

(a) We want to show the vertices in U1 that are part of a maximum
matching constitute a matroid. Prove this using the reduction of
maximum bipartite matching to max flow and solving max flow
by a Ford Fulkerson algorithm. If you are not familliar with Ford
Fulkerson max flow algorithms, just state what you need to know
in terms of the bipartite graph.

(b) What is an algorithm to compute a matching M that will max-
imize the sum of the weights of vertices in U1 that occur in the
matching M .

(c) Consider the modification of the above objective so that now you
want a matching M of size at most k ≤ |U1| that maximizes the
weights of vertices in U1. Hint: In general, the intersection of two
matroids is not a matroid. Can you think of a general condition
under which the interesection of two matroids is a matroid?

7. Consider the problem of online binary classification in the realizable
case. Let X = {0, 1}n and Y = {0, 1}. Describe a hypothesis class H
where the halving algorithm is not optimal, that is, where you would
get a better worst-case mistake bound by not always going with the
majority vote of the available hypotheses.

Hint: The issue is that it’s possible for the size of class H to not be a
good indicator of how hard it is to learn.

Note: it’s OK if your hypothesis class is a bit contrived.

5

