
CSC 2420 Spring 2017, Assignment 2
Due date: March 27

It is certainly preferable for you to solve the questions without consulting
a published source. However, if you are using a published source then you
must specify the source and you should try to improve upon the presentation
of the result.

If you would like to discuss any questions with someone else that is fine
BUT at the end of any collaboration you must spend at least one hour playing
video games or watching two periods of Maple Leaf hockey or maybe even
start reading a good novel before writing anything down.

Unless stated otherwise, all subquestions are worth 10 points. If you do
not know how to answer a question, state “I do not know how to answer
this (sub) question” and you will receive 20% (i.e. 2 of 10 points) for doing
so. You can receive partial credit for any reasonable attempt to answer a
question BUT no credit for arguments that make no sense.

In class I can clarify any questions you may have about this assignment.

1

1. (a) Consider the following vertex weighted bipartite matching prob-
lem. We are given a bipartite graph G = (X ∪ Y,E), with
E ⊆ X × Y and a positive integer capacity bound cy for each
y ∈ Y . The goal is to match vertices in X to vertices in Y such
that for every y ∈ Y , no more than cy vertices in X get matched
to y. Use a max flow based algorithm to optimally maximize the
size of the matching.

(b) Consider the mackespan problem for the m machine restricted
machines model. That is, every job Ji is represented by a pair
(pi, Ai) where pi is the processing time (or load) for the job and
Ai ⊆ {1, . . . ,m} is the set of machines on which the job can
be scheduled. Provide an optimal polynomial time algorithm for
minimizing the makespane when all processing times identical (i.e
∀i, pi = c for some c > 0).

2. Consider the following weighted partial vertex cover problem: We are
given a graph G = (V,E) with node weights c : V → Q+ and edge
weights d : E → Q+. The goal is to find a partial cover V ′ ⊆ V so
as to minimize the total cost of nodes in the cover V ′ plus the cost of
edges not covered (i.e. edges not adjacent to at least one node in V ′)
subject to the constraint that at most k edges are not covered.

(a) Provide a {0,1} IP for this problem.

(b) Using an LP relaxation and rounding of the IP, what is the ap-
proximation ratio that you obtain?

3. The following questions concern graph matching. For definiteness we
can consider worst case complexity for deterministic algorithms but the
following apply also to randomized algorithms (i.e. distributions over
deterinistic algorithms) and also to stochastic analysis (i.e. distribu-
tions over inputs).

(a) Let A be any algorithm that returns a maximal matching on
some input graph instance G. Show that the size of the matching
|A(G)| ≥ 1

2
|OPT (G)| where OPT is any maximum matching for

G. Thus any algorithm that always returns a maximal matching
obtains (at least) approximation ratio 1

2
.

2

(b) Let G be a bipartite graph. Show that any online algorithm A can
be converted to a greedy online algorithm B obtaining at least the
same approximation ratio. Here greedy means that B will always
match an online vertex if one of its neighbours is still available.
Does anyone want a hint?

4. Consider the m machine makespan problem in the related machines
model and suppose there are m1 machines with speed 1 and m2 ma-
chines with “slowdown” s > 1. We will say a job has basic processing
time p if it takes time p to run on a machine at speed 1 and time s · p
to run on a machine with slowdown s. Suppose all jobs have basic
processing times in {1, 2, 3}

(a) Show that it is an FPT problem (in parameter T) to determine if
an instance has makespan T .

(b) Show how to determine a solution if an instance has makespan T .

Hint: It is an FPT problem (in parameter k) to solve an IP instance
with k variables. You may use this fact.

5. We are given a degree bound d << n and query access to a partial table
for a function f : Q→ Q; namely given {(x1, f(x1), . . . , (xn, f(xn)} we
can access any (xi, f(xi)) in one query. Consider the following:

(a) We want to test if the partial table f is produced by a degree
d polynmial p or if it is “far-away” from any degree d polyno-
mial where by far-away we mean that f(xi) = p(xi) for at most
(1− 2/d)n of the points given in the table. Provide a randomized
1-sided error algorithm that will make O(d) queries, always re-
turning p if it exists and with probability ≥ δ will determine that
f is far-away from any degree d polynomial. If neither condition
is true, the algorithm can give any answer.

Analyze the probability δ that can be achieved in terms of the
number of queries used.

(b) We now want to test if the partial table f is “close-to” a degree
d polynomial p or “far-away” where far-away is as before and
“close-to” means that f(xi) = p(xi) for at least (1 − 1/d)n of

3

the points given in the table. Provide a randomized 2-sided error
algorithm that will make O(d) queries, returning p if it exists with
probability ≥ δ or determining with probability ≥ δ that f is far-
away from any degree d polynomial. If neither condition is true,
the algorithm can give any answer.

4

