
CSC 2420 Spring 2017, Assignment 1
Due date: February 13, 2017 (start of class)

It is certainly preferable for you to solve the questions without consulting
a published source. However, if you are using a published source then you
must specify the source and you should try to improve upon the presentation
of the result.

If you would like to discuss any questions with someone else that is fine
BUT at the end of any collaboration you must spend at least one hour playing
video games or watching two periods of Maple Leaf hockey or maybe even
start reading a good novel before writing anything down.

Unless stated otherwise, all subquestions are worth 10 points. If you do
not know how to answer a question, state ”I do not know how to answer
this (sub) question and you will receive 20% (i.e. 2 of 10 points) for doing
so. You can receive partial credit for any reasonable attempt to answer a
question BUT no creiodt for arguments that make no sense.

In class I can clarify any questions you may have about this assignment.
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1. Consider the makespan problem for the identical machines model with
m machines. We sketched the proof that the worst case competitive
ratio

CGreedy

COPT
of the natural online greedy algorithm is ≤ 2− 1

m
for every

input. We also gave an example showing that this ratio is “tight” (i.e.
cannot be improved) for this algorithm.

• Finish the proof that was sketched in Lecture 1; that is, use the
fact that COPT ≥

∑
1≤i≤n pi/m for any sequence of n input jobs

and COPT ≥ pi where job Ji has “load” pi.

• Argue for m = 2 machins that any (not necessarily greedy) online
algorithm would have competitive ratio no better than 3

2
so that

the above bound is tight for m = 2 for any online algorithm.

• Suppose jobs now are transient with a job arriving at some time
ai and departing at some (unknown at arrival) time di. Does the
same competitive ratio hold at any time during the execution of
the Greedy algorithm? If no, then give a counter example; if yes,
then argue why the proof still applies. Here as before, a job must
be scheduled on one of the m machines at the time of arrival.

• Consider the original makespan problem (i.e. permanent jobs) but
now in the random order ROM model. Show that the (expected)

approximation ratio
E[CGreedy ]

COPT
≥ 2 − ε for any ε > 0. NHere the

expectation is with respedct to the uniform distribution on input
arrival order.
If you cannot prove the stated claim then prove any ratio greater
than 1. Hint: generalize the nemesis sequence for the adversarial
competitive ratio.
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2. Consider the knapsack problem with input items {(v1, s1), . . . , (vn, sn)}
and capacity C. Without loss of generality the sizes sj of all items are
at most C. Consider the following “natural” greedy algorithms which
initially sorts the input set and then schedules greedily (i.e. takes
the item if it fits). For each algorithm provide input instances which
show that these algorithms will not achieve a c-approximation for any
constant c.
Note: For definiteness, assume all input values are integral which in
principle could make an inapproximation result harder. But here it
should be easy to derive appropriate integral examples.

• Greedy by value: Sort the items Ij = (vj, sj) so that v1 ≥ v2 . . . ≥
vn.

• Greedy by size: Sort the items so that s1 ≤ s2 . . . ≤ sn.

• Greedy by value-density: Sort the items so that v1
s1
≥ v2

s2
. . . ≥ vn

sn

3. For the knapsack problem, consider the algorithm that returns the max-
imum of “Greedy by value” and “Greedy by value-density” as defined
in the previous question. Return the better of the two solutions. Show
that this algorithm is a 2-approximation for the knapsack problem by
showing the following:

• Let item t be the first item that is rejected by Greedy by value
density. That is, when v1/s1 ≥ v2/s2 . . . ≥ vn/sn then

∑t−1
i=1 si ≤

C and
∑t

i=1 si > C where C is the capacity bound. (We can
assume there is such a t since otherwise if all items fit in the
knapsack then any greedy algorithm will be optimal.) Show that∑t

i=1 vi ≥ OPT

• Show how the above fact implies that the algorithm that returns
the maximum of “Greedy by value” and “Greedy by value-density”
is a 2-approximation.
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4. The following refers to the underlying optimization problem in the
multi-minded conbinatorial auction (CA) problem and its relation to
the maximum weighted independent set problem in (k + 1)-claw free
graphs.

There are n agents and each agent i is intersted in certain desireable
subsets S1

i , . . . S
ni
i where each subset Sj

i ⊂ U has size at most s and
value vji for agent i. The goal is to allocate at most one desireable
subset to each agent so that the allocated subsets are disjoint and the
total value of all allocated subsets is maximized.

• Show how to formulate the above problem in terms of the maxi-
mum weighted independent set problem in (k+ 1)-free graphs for
an appropriate k.

• Consider the weighted maximum independent set problem in (k+
1)-claw free graphs and the “greedy-by-value” approximation al-
gorithm for this problem. Use a “charging argument” to show
that this algorithm provides an k approximation. What conclu-
sion can you state for approximating the above multi-minded CA
optimization problem?

5. This problem concerns the weighted interval scheduling problem (WISP)
on two machines. That is, the intervals (si, fi, wi) are to be scheduled
on two machines without intersection. Here si(resp.fi, resp.wi) is the
start time (resp. finish time, resp. weight or value) of the ith input job.
(We usually allow intersection when fi = sj for some i < j.) Let the
intervals {I1, . . . , In} be sorted so that f1 ≤ f2 . . . ≤ fn.

Give an optimal DP for WISP on two machines.
Hint: Use the idea for the one machine WISP discussed in class.
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6. Consider the following {0, 1, 3} knapsack problem with input items
{(v1, s1), . . . , (vn, sn)} and capacity C. (Assume all parameters are in-
tegral). Each of the items (vi, si) is either not used or used once or
three times in the knapscak and as in the classical {0, 1} knapsack,
the capacity cannot be exceeded. To be precise: maximize

∑
1≤i≤n nivi

subject to
∑

1≤i≤n nisi ≤ C and ni ∈ {0, 1, 3} for all i.

Give an optimal pseudo polynomial time DP algorithm for this prob-
lem. State the time complexity of your algorithm. (Note: the time
complexity should be a polynomial in terms of n and C.)

7. Consider the exact max-2-sat problem. Define the extended Hamming
neighbourhood N ′(τ) = N1(τ) ∪ {τ̄}. That is, it is the Hamming dis-
tance 1 augmented with the component–wise complement of τ . Com-
plete the proof that shows that the oblivious local search algorithm
(with neighbiurhood N ′) achieves a 3

4
totality ratio. That is, at every

local optimum, the solution has weight at least 3
4
’s of the sum of the

weights of all clauses.
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