Fine-Grained Complexity and Algorithm Design Boot Camp
Lower Bounds Based on SETH

Daniel Marx
(slides by Daniel Lokshtanov)

Simons Institute, Berkeley, CA
September 4, 2015

Tight lower bounds

Have seen that ETH can give tight lower bounds
How tight? ETH «ignores» constants in exponent

How to distinguish 1.85" from 1.0001"?

SAT

Input: Formula ¢ with m clauses over n boolean
variables.

Question: Does there exist an assignment to the
variables that satisfies all clauses?

Note: Input can have size superpolynomial in n!

Fastest algorithm for SAT: 2"poly(m)

d-SAT

Here all clauses have size < d
Input size < n¢

Fastest algorithm for 2-SAT:
Fastest algorithm for 3-SAT:
Fastest algorithm for 4-SAT:

Fastest algorithm for d-SAT:

Fastest algorithm for SAT:

n+m
1.31"
1.47"

2T(A—c/d)n
2Tn

Strong ETH

Let sdd =inf{c: d-SAT has a 2Tcn algorithm}

Let sJoo = lim+d— o0 sdd

Know: OSsd <sdo < 1

ETH: s, > 0 SETH: wo- 1

Showing Lower Bounds under SETH

d-SAT ey YoUr Problem

1.99999 77 oo’ N ,~~ "7 Too fast algorithm?

The number of 9’s MUST
be independent of d

Dominating Set

Input: n vertices, integer k

Question: Is there a set S of at most k vertices
such that N[S] = V(G)?

Naive: n*+! nk/107
Smarter: nk+o(l) '

Assuming ETH: no f(k)n°®)

SAT - k-Dominating Set

SAT-formula <
— //

k groups, each on
n/k variables.

Variables

g

1oL\

One vertex for each of the 2"k

assignments to the variables

in the group.

Variables

SAT-formula
W\ \\

k groups, each on
n/k variables.

Selecting one vertex from each

cloud corrsponds to selecting
an assignment to the variables.

Variables

SAT-formula

W\ O\

k groups, each on
n/k variables.

Edge if the partial assignment
satisfies the clause

O0000000O0O00O0O0O0O

One vertex per clause in the formula

SAT - k-Dominating Set

analysis

Too fast algorithm for k-Dominating Set: nk-0-01
For any fixed k (like k=3)

If m > 2"kthen 2" is at most m¥,
which is polynomial! The output graph has
So m <2n/k k2"k + m < 2k - 2"k vertices

< Q&) Tk -2Tnk—0.01/%
(24-21n/ k) T4—0.01

=0(1.999Tn)

Dominating Set, wrapping up

A O(n?°?) algorithm for 3-Dominating Set, or

a O(n37?) algorithm for 4-Dominating Set, or a

a O(n*??) algorithm for 5-Dominating Set, or a ...
... would violate SETH.

Treewidth

* We have seen: 2tn%1), 3tn0(1) etc. algorithms and no
20°0n0(1) 3lgorithms assuming ETH.

Independent Set / Treewidth

Input: Graph G, integer k, tree-decomposition of
G of width < t.

Question: Does G have an independent set of
size at least k?

DP: O(2'n) time algorithm
Can we do it in 1.99'poly(n) time?

Next: If yes, then SETH fails!

Independent Set / Treewidth

Will reduce n-variable d-SAT to Independent Set
in graphs of treewidth t, where t < n+d.

So a 1.99%poly(N) algorithm for Independent Set
gives a 1.99"*poly(n) < 0(1.999") time algorithm
for d-SAT.

Independent Sets on an Even Path

In independent set: O

True () Not in solution: ‘

False

d-SAT < Independent Set

proof by example

Y=(avbVvec)A(@vevd)A(bvevd)

6o o &b
{1 |

o @) O Q

Independent Sets <> Assignments

Y=(avbVvc)A(@vevd)A(bvecvd)

But what about the
first true then false independent sets?

Dealing with true—>false

Every variable flips true—>false at most once!

Treewidth Bound

by picture

Formal proof - exercise

Independent Set / Treewidth

wrap up

Reduced n-variable d-SAT to Independent Set in
graphs of treewidth t, where t < n+d.

A 1.99'poly(N) algorithm for Independent Set
gives a 1.99"9poly(n) < 0(1.999") time algorithm

for d-SAT.

Thus, NO 1.99° algorithm for
Independent Set assuming SETH

Assuming SETH, the following algorithms are
optimal:
— 2% poly(n) for Independent Set

— 3. poly(n) for Dominating Set

— c'- poly(n) for c-Coloring

— 3% poly(n) for Odd Cycle Transversal

— 2. poly(n) for Partition Into Triangles

— 2% poly(n) for Max Cut

— 2t poly(n) for #Perfect Matching

3t lower bound for Dominating Set?

Need to reduce k-SAT formulas on n-variables to
Dominating Set in graphs of treewidth t, where

3Tt=2Tn

SO t=7n/log3 zO 5872

Hitting Set / n

Input: Family F={S,,...,S, .} of sets over universe
U={v, .., Vv, } integer k.

Question: Does there exist a set X € U of size at
most k such that for every S, € F, S, N X #@?

Naive algorithm runs in o2mnm) time.

Next: 1.41 M poly(n,m) implies that SETH fails

d-SAT < Hitting Set

Y=(@VvbVvc)A(@vecvd)A(bVcvd)

d-SAT vs Hitting Set

A c" algorithm for Hitting Set makes a c¢?"
algorithm for d-SAT.

Since 1.41°" < 1.9999", a 1.41" algorithm for
Hitting Set violates the SETH.

2 N
Have a algorithm anda 1.41" lower bound.

2"
Next: lower bound

Hitting Set

For any fixed €>0, will reduce k-SAT with n
variables to Hitting Set with universe with at
most (1+€)n elements.

So a 1.99" algorithm for Hitting Set gives a
1.997(1+J < 1.999" time algorithm for k-SAT

Some deep math

For every €0 there exists a natural number g
such that, for t = [g(1+4+€) [Jodd we have:

(tle/21)=27g

Why is this relevant?

d-SAT < Hitting Set

Group the variables into groups of size g, and set

Solution budget /22] from each group

Will force >/z2 1 from each group

— Exactly /22 1 from each group

\—'—’

Elements < (1 + €) - variables

Analyzing a group
Group of g variables
28 assignments to variables
Injection

«!it2 1) subsets of elements of size
exactly /2.

Group of t elements

Forcing solution [£/2 [vertices
in a group?

Add all subsets of the group of size jz/2 j to the family F.

Lets call these sets guards

Any set that picks less than [z2]
elements the group misses a guard.

Any set that picks at least /22] elements from
each group hits all the guards

Analyzing a group

Group of g variables

' assignments to variables

subsets of elements of size exactly [¢/
2 7.

Group of t elements

What about the element subsets of size /22 j that
do not correspond to assighnments?

Sets of size [t/2 [

Adding a set of size [£/2 [to the family F
ensures that the «group complement» set is not
picked.

All other sets of size [£/2 [in the group may still
be picked in solution.

Forbid sets of size [¢/2 | that do not correspond
to assignments.

d-SAT < Hitting Set

Variables:

assignments

e

potential
solutions

Elements: -

Solutions « Satisfying assignments

Want:

Forbidding partial assighments

Pick any d groups of variables, and consider
some assighment to these variables.

If this assighnment falsifies ¢ we want to forbid
the corresponding set in the Hitting Set instance

from being selected.

Forbidding partial assighments

00

J !

Set added to F to forbid the bad assignment

Forbidding partial assighments

For each bad assighment to at most d groups,
forbid it by adding a «bad assignment guard»

This adds O(n9289) = O(n¢) sets to F.

Satisfying Assighments < Hitting Sets

A satisfying assignment has no bad
sub-assignments =2 corresponds to a hitting set.

A hitting set corresponds to an assignment.

If this assignment falsified a clause C, the
assignment would be bad for the < d groups C
lives in, and miss a bad assignment guard.

Hitting Set wrap up

Can reduce n variable d-SAT to n(1+€) element
Hitting Set.

So a c" algorithm for Hitting Set yields a (c+¢&)"
algorithm for d-SAT.

A 1.99" algorithm for Hitting Set would violate
SETH.

Conclusions

SETH can be used to give very tight running time
bounds.

SETH recently has been used to give lower
bounds for polynomial time solvable problems,
and for running time of approximation
algorithms.

Important Open Problems

Can we show a 2" lower bound for Set Cover
assuming SETH?

Can we show a 1.00001 lower bound for 3-SAT
assuming SETH?

