
Fine-Grained	Complexity	and	Algorithm	Design	Boot	Camp	

Lower	Bounds	Based	on	SETH		

Dániel	Marx	
(slides	by	Daniel	Lokshtanov)	

	
Simons	Ins;tute,	Berkeley,	CA	

September	4,	2015	

Insert
«Academic unit»
on every page:

1 Go to the menu «Insert»
2 Choose: Date and time
3 Write the name of your
faculty or department in the
field «Footer»
4 Choose «Apply to all"

Tight	lower	bounds	

Have	seen	that	ETH	can	give	Cght	lower	bounds	

	

How	Cght?	ETH	«ignores»	constants	in	exponent	

	

How	to	disCnguish	1.85
n
	from	1.0001

n
?	

SAT	

Input:	Formula	!	with	m	clauses	over	n	boolean	

variables.	

Ques;on:	Does	there	exist	an	assignment	to	the	

variables	that	saCsfies	all	clauses?	

	

Note:	Input	can	have	size	superpolynomial	in	n!	

Fastest	algorithm	for	SAT:	2
n
poly(m)	

d-SAT	

Here	all	clauses	have	size	≤	d	

Input	size	≤	n
d	

	

	

Fastest	algorithm	for	2-SAT: 	n+m	

Fastest	algorithm	for	3-SAT: 	1.31
n
	

Fastest	algorithm	for	4-SAT: 	1.47
n	

…	

Fastest	algorithm	for	d-SAT: 	 2↑(1− %⁄' )* 	
Fastest	algorithm	for	SAT:	 	 2↑* 	

Strong	ETH	

Let	 +↓' =inf{% :	d-SAT	has	a	2↑%* 	algorithm}	
	

	

	
Know:	0	≤	s

d
	≤	 s↓∞ 	≤	1	

ETH:	s
3
	>	0	 SETH:	 s↓∞ =	1	

Let	 +↓∞ = lim┬'→∞  +↓'  	
	

	

Showing	Lower	Bounds	under	SETH	

Your	Problem	

Too	fast	algorithm?	

d-SAT	

1.99999↑* 	

The	number	of	9’s	MUST		

be	independent	of	d	

DominaCng	Set	

Input:	n	verCces,	integer	k	
Ques;on:	Is	there	a	set	S	of	at	most	k	verCces	

	such	that	N[S]	=	V(G)?	

	

Naive:	n
k+1
	

Smarter:	n
k+o(1)	

Assuming	ETH:	no	f(k)n
o(k)

	

n
k/10

?	

n
k-1
?	

SAT	à	k-DominaCng	Set	

Variables	

SAT-formula	

k	groups,	each	on	

n/k	variables.	

One	vertex	for	each	of	the	2
n/k
		

assignments	to	the	variables	

in	the	group.	

x y

x y
x y x y

x y

Variables	

SAT-formula	

k	groups,	each	on	

n/k	variables.	

SelecCng	one	vertex	from	each	

cloud	corrsponds	to	selecCng	

an	assignment	to	the	variables.	

Cliques	

x y

x y
x y x y

x y

Variables	

SAT-formula	

k	groups,	each	on	

n/k	variables.	

One	vertex	per	clause	in	the	formula	

Edge	if	the	parCal	assignment	

saCsfies	the	clause	

SAT	à	k-DominaCng	Set	
analysis	

Too	fast	algorithm	for	k-DominaCng	Set:	n
k-0.01	

For	any	fixed	k	(like	k=3)	

The	output	graph	has		

k2
n/k
	+	m	≤	2k	⋅	2n/k	verCces	

If	m	≥	2n/k	then	2n	is	at	most	m
k
,		

which	is	polynomial!	

So	m	≤2n/k	

(22⋅2↑*/2 )↑2−0.01  		

≤ (22)↑2 ⋅ 2↑*2−0.01/2  	

=3(1.999↑* )	

DominaCng	Set,	wrapping	up	

A	O(n
2.99

)	algorithm	for	3-DominaCng	Set,	or		

a	O(n
3.99

)	algorithm	for	4-DominaCng	Set,	or	a	

a	O(n
4.99

)	algorithm	for	5-DominaCng	Set,	or	a	…	

…	would	violate	SETH.	

Treewidth	

•  We	have	seen:	2
t
n
O(1)

,	3
t
n
O(1)

,	etc.	algorithms	and	no	

2
o(t)
n
O(1)

	algorithms	assuming	ETH.
	

Independent	Set	/	Treewidth	

Input:	Graph	G,	integer	k,	tree-decomposiCon	of	

G	of	width	≤	t.	

Ques;on:	Does	G	have	an	independent	set	of	
size	at	least	k?	

DP:	O(2
t
n)	Cme	algorithm	

Can	we	do	it	in	1.99
t	
poly(n)	Cme?	

Next:	If	yes,	then	SETH	fails!	

Independent	Set	/	Treewidth	

Will	reduce	n-variable	d-SAT	to	Independent	Set	

in	graphs	of	treewidth	t,	where	t	≤ n+d.	
	

So	a	1.99
t
poly(N)	algorithm	for	Independent	Set	

gives	a	1.99
n+d

poly(n)	≤	O(1.999
n
)	Cme	algorithm	

for	d-SAT.	

Independent	Sets	on	an	Even	Path	

t f t f t f t f t f

True	

False	

	

							In	independent	set:																			

	

							Not	in	soluCon:								

				

first	

True	

then	

False	

d-SAT	≤	Independent	Set	
proof	by	example	

!	=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)		=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)	

t f t f t f

t f t f t f

t f t f t f

t f t f t f

a	

b	

c	

d	

a c

b

a d

c

b d

c

Independent	Sets	↔	Assignments	

!	=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)		=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)	

t f t f t f

t f t f t f

t f t f t f

t f t f t f

a	

b	

c	

d	

a c

b

a d

c

b d

c

True	

True	

False	

False	

	

But	what	about	the	

						first	true	then	false	independent	sets?						
	

Dealing	with	trueàfalse	

a	

b	

c	

d	

Clause	

gadgets	

1	 2	 3	 1	 2	 3	 1	 2	 3	 1	 2	 3	 1	 2	 3	

Every	variable	flips	trueàfalse	at	most	once!	

Treewidth	Bound	
by	picture	

t f t f t f

t f t f t f

t f t f t f

t f t f t f

a	

b	

c	

d	

a c

b

a d

c

b d

c

…	

…	

…	

…	

n	

d	

Formal	proof	-	exercise	

Independent	Set	/	Treewidth	

wrap	up	

Reduced	n-variable	d-SAT	to	Independent	Set	in	

graphs	of	treewidth	t,	where	t	≤ n+d.	
	

A	1.99
t
poly(N)	algorithm	for	Independent	Set	

gives	a	1.99
n+d

poly(n)	≤	O(1.999
n
)	Cme	algorithm	

for	d-SAT.	

Thus,	no	1.99
t
	algorithm	for		

Independent	Set	assuming	SETH	

Assuming	SETH,	the	following	algorithms	are	

opCmal:	

–  	2t	⋅	poly(n)	for	Independent	Set	
–  	3t	⋅	poly(n)	for	DominaCng	Set	

–  	ct	⋅	poly(n)	for	c-Coloring	
–  	3t	⋅	poly(n)	for	Odd	Cycle	Transversal	
–  	2t	⋅	poly(n)	for	ParCCon	Into	Triangles	
–  	2t	⋅	poly(n)	for	Max	Cut	

–  	2t	⋅	poly(n)	for	#Perfect	Matching	

– …	

3
t
	lower	bound	for	DominaCng	Set?	

Need	to	reduce	k-SAT	formulas	on	n-variables	to	

DominaCng	Set	in	graphs	of	treewidth	t,	where			

3↑4 ≈2↑* 	

So	t≈*⁄log 3  ≈0.58*		

Hiong	Set	/	n	

Input:	Family	F	=	{S
1
,…,S

m
}	of	sets	over	universe	

U	=	{v
1
,	…,	v

n
},	integer	k.	

	

Ques;on:	Does	there	exist	a	set	X	⊆	U	of	size	at	

most	k	such	that	for	every	S
i
	∈	F,	S

i
	∩ X	≠∅?	

Naive	algorithm	runs	in	 O(2↑n nm)	Cme.	

Next:	 1.41↑n poly(n,m)	implies	that	SETH	fails		

d-SAT	≤	Hiong	Set	

a	

a 	

!	=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)		=	(a	∨	b	∨	c)	∧	(a	∨	c	∨	d)	∧	(b	∨	c	∨	d)	

b	

b 	

c	

c 	

d	

d 	
Budget	=	4	

d-SAT	vs	Hiong	Set	

A	c
n
	algorithm	for	Hiong	Set	makes	a	c

2n
	

algorithm	for	d-SAT.	

	

Since	1.41
2n
	<	1.9999

n
,	a	1.41

n
	algorithm	for	

Hiong	Set	violates	the	SETH.	

Have	a	2
n

	algorithm	and	a	1.41
n
	lower	bound.	

Next:	2
n

	lower	bound		

Hiong	Set	

For	any	fixed	ϵ>0,	will	reduce	k-SAT	with	n	
variables	to	Hiong	Set	with	universe	with	at	

most	(1+5)n	elements.)n	elements.	

So	a	1.99
n
	algorithm	for	Hiong	Set	gives	a		

1.99
n(1+5)	≤	1.999n	Cme	algorithm	for	k-SAT		

)
	≤	1.999n	Cme	algorithm	for	k-SAT		

Some	deep	math	

For	every	5>0	there	exists	a	natural	number	g	

such	that,	for	t	=	 ⌊g(1+ϵ)⌋↓odd 	we	have:	
(4¦⌈4⁄2 ⌉ )≥ 2↑; 	

Why	is	this	relevant?	

d-SAT	≤	Hiong	Set	

Group	the	variables	into	groups	of	size	g,	and	set	

t	=⌊;(1+ϵ)⌋↓odd .	
Variables:	

g	 g	
g	 g	

g	

t	

t	 t	
t	 t	

Elements	≤	(1	+	ϵ)	⋅	variables	

Elements:	

	

SoluCon	budget	⌈4⁄2 ⌉	from	each	group	

	

Will	force	≥⌈4⁄2 ⌉	from	each	group	

	

à	Exactly	⌈4⁄2 ⌉	from	each	group	

	

Analyzing	a	group	

Group	of	g	variables	

Group	of	t	elements	

2
g
	assignments	to	variables	

(4¦⌈4⁄2 ⌉ )	subsets	of	elements	of	size	

exactly	⌈4⁄2 ⌉.	

InjecCon	

Forcing	soluCon	⌈4⁄2 ⌉	verCces		
in	a	group?		

Add	all	subsets	of	the	group	of	size	⌈4⁄2 ⌉	to	the	family	F.		

Any	set	that	picks	less	than	⌈4⁄2 ⌉	
elements	the	group	misses	a	guard.	

Any	set	that	picks	at	least	⌈4⁄2 ⌉	elements	from		

each	group	hits	all	the	guards	

Lets	call	these	sets	guards	

Analyzing	a	group	

Group	of	g	variables	

Group	of	t	elements	

assignments	to	variables	

subsets	of	elements	of	size	exactly	⌈4⁄
2 ⌉.	

InjecCon	

What	about	the	element	subsets	of	size	⌈4⁄2 ⌉	that	
do	not	correspond	to	assignments?			

Sets	of	size	⌊4⁄2 ⌋	
Adding	a	set	of	size	⌊4⁄2 ⌋	to	the	family	F	

ensures	that	the	«group	complement»	set	is	not	

picked.	

	

All	other	sets	of	size	⌈4⁄2 ⌉	in	the	group	may	sCll	

be	picked	in	soluCon.		

	

Forbid	sets	of	size	⌈4⁄2 ⌉	that	do	not	correspond	
to	assignments.	

d-SAT	≤	Hiong	Set	

Variables:	
g	 g	

g	 g	
g	

t	

t	 t	
t	 t	

Elements:	

potenCal	

soluCons	

assignments	

Want:	
SoluCons	↔	SaCsfying	assignments	

Forbidding	parCal	assignments	

Pick	any	d	groups	of	variables,	and	consider	

some	assignment	to	these	variables.	

	

If	this	assignment	falsifies	!	we	want	to	forbid	
the	corresponding	set	in	the	Hiong	Set	instance	

from	being	selected.	

Forbidding	parCal	assignments	

Variables	

…	

…	

Bad	assignment	

Set	added	to	F	to	forbid	the	bad	assignment	

Forbidding	parCal	assignments	

	

For	each	bad	assignment	to	at	most	d	groups,	

forbid	it	by	adding	a	«bad	assignment	guard»	

	

This	adds	O(n
d
2
gd
)	=	O(n

d
)	sets	to	F.	

SaCsfying	Assignments	↔	Hiong	Sets	

A	saCsfying	assignment	has	no	bad		

sub-assignments	à	corresponds	to	a	hiong	set.	

	

A	hiong	set	corresponds	to	an	assignment.		

	

If	this	assignment	falsified	a	clause	C,	the	

assignment	would	be	bad	for	the	≤	d	groups	C	

lives	in,	and	miss	a	bad	assignment	guard.			

Hiong	Set	wrap	up	

Can	reduce	n	variable	d-SAT	to	n(1+ϵ)	element	

Hiong	Set.		

	

So	a	c
n
	algorithm	for	Hiong	Set	yields	a	(c+5)n)n	

algorithm	for	d-SAT.	

	

A	1.99
n
	algorithm	for	Hiong	Set	would	violate	

SETH.	

Conclusions	

SETH	can	be	used	to	give	very	Cght	running	Cme	

bounds.	

	

SETH	recently	has	been	used	to	give	lower	

bounds	for	polynomial	Cme	solvable	problems,	

and	for	running	Cme	of	approximaCon	

algorithms.	

Important	Open	Problems	

Can	we	show	a	2
n
	lower	bound	for	Set	Cover	

assuming	SETH?	

Can	we	show	a	1.00001	lower	bound	for	3-SAT	

assuming	SETH?	

