
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 9

Allan Borodin

March 13, 2016

1 / 33

Lecture 9

Announcements

1 I have the assignments graded by Lalla.
2 I have now posted five questions for Assignment 2 and the assignment

is now complete. The due date is March 27.

Todays agenda

1 Sublinear time and space algorithms.

2 / 33

Sublinear time and sublinear space algorithms
We now consider contexts in which randomization is provably more
essential. In particular, we will study sublinear time algorithms and then
the (small space) streaming model.

An algorithm is sublinear time if its running time is o(n), where n is
the “length” of the input. As such an algorithm must provide an
answer without reading the entire input.
Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs
and/or to randomly keep “snapshots” of what we have seen.
The subject of sublinear time and sublinear space algorithms are
extensive topics and we will only present a very small selection.
The general flavour of sublinear time results will be a tradeoff
between the accuracy of the solution and the time bound. There is
some relation between this topic and distributed local algorithms.
Sublinear space algorithm (e.g. streaming algorithms) have some
relation to online algorithms.
These topics will take us beyond search and optimization problems.

3 / 33

A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi)
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time (and
hence sublinear in n2, the number of distances) algorithm; namely,
choose an arbitrary point x ∈ M and compute D = maxj d(x , xj). By
the triangle inequality, D is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an implicitly
represented distance function (such as d dimensional Euclidean
space), the points could be explicitly given as inputs and then the
input size is n and not n2.

4 / 33

Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

Recall that by independent trials, we can reduce the probability of
error.

We will consider the following examples:

1 Finding an element in an sorted (doubly) linked list
[Chazelle,Liu,Magen]

2 Estimating the average degree in a graph [Feige 2006]
3 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
4 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.
5 In many cases, the algorithms will be “simple” or “reasonably natural”

but the analysis might be quite non-trivial.

5 / 33

Finding an element in a sorted list of distinct
elements.

Suppose we have an array A[i] for 1 ≤ i ≤ n where each A[i] is a
triple (xi , pi , si) where the {pi , si} constitute a doubly linked list.

That is, pi = j : argmax{j |xj < xi} if such an xj exists and similarly
qi = argmin|xj > xi}.
We would like to determine if a given value x occurs in a doubly
linked list and if so, output the index j such that x = xj .

A
√
n algorithm for searching in a sorted linked list

Let R = {ji |1 ≤ i ≤
√
n} be

√
n randomly chosen indices.

Access these {A[ji]} to determine the predecessor and successor of x
amongst these randomly chosen elements of the list. (There may not be
both a predecssor and successor.) Then (alternately) do a brute force
linked search (or resp. search for

√
n steps) in both directions of the linked

list to determine whether or not xk exists.

6 / 33

Finding an element in a sorted list (continued)

Claim:

This is a zero sided (resp, one-sided error algorithm) that runs in expected
time O(

√
n) (resp. has constant probability of not find x if it exists).

Using the Yao principle this expected time can be shown to be
optimal.

The same can be done for a singly linked list if the list is “anchored” ;
i.e., we have the index of the smallest element in the list.

Similar results were shown by Chazelle, Liu and Magen for various
geometric problems such as determining whether or not two convex
polygons (represented by doubly linked lists of the vertices) intersect.

Note that most sublinear time algorithms are either randomized
1-sided or 2-sided error algorithms and not 0-sided algorithms that
always compute a correct answer but whose running time is bounded
in expectation.

7 / 33

Estimating average degree in a graph

Given a graph G = (V ,E) with |V | = n, we want to estimate the
average degree d of the vertices. We can assume that G is connected
and hence there are at least n − 1 edges.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Again, we note that like a number of results in this area, the
algorithm is simple but the analysis requires some care.

The (simplified) Feige algorithm Czumaj and Sohler survey.

Sample 8/ε random subsets Si of V each of size (say)
√
n
ε3

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

8 / 33

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But it can be shown that
with high probability these estimates will not be too bad. More precisely,
we need:

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄] ≤ 1− ε
2

The probability bound in Lemma 2 follows from the Markov inequality
which is then amplified as usual by the repeated 8/ε trials so that the
probability that all of the ai are bigger than (1 + ε)d̄ is at most
(1− ε/2)8/ε = (1− 1/t)4t ≤ (1/e)4t letting t = 2/ε.

9 / 33

The analysis of the average degree (continued)

From Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

It remains to sketch a proof of Lemma 1. Let H be the set of the
√
εn

highest degree vertices in V and L = V \ H. Then∑
v∈L dv ≥ (12 − ε)

∑
v∈V dv since there can be at most ε · n edges

within H and every edge adjacent to L contribues at least 1 to the
sum of degrees of vertices adjacent to L and thereare at least n − 1
edges. The 1

2 is becasue we are possibly double counting the
contribution of edges within L.

For a lower bound on the average degree of vertices in a sample set
S , the worst case is if all the sampled vertices are in L.

10 / 33

Conclusion of proof sketch for Lemma 1

Let Xj be the random variable corresonding to the i th sampled vertex
in a sampled set S where each such S has size s. By Hoeffding’s
generalization of the Chernoff bound, we have

Prob[(1/s)(
s∑
j

Xj ≤ (1− ε)(1/|L|)[
∑
v∈L

deg(v)]

is exponentially small; that is, the probability that the average degree
in a sampled set is (1− ε) less than the average degree in L is
exponentially small.

But the average degree of a vertex in L is at least (1/2− ε) times the
average degree in the graph so that being less than (1/2− ε) the
average degree is exponentially small.

Feige’s more detailed analysis shows that a (2 + ε) approximation can
be obtained using time (i.e., queries) O(

√
n/d0/ε) for graphs with

average degree at least d0.

11 / 33

Understanding the input query model
As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.
Feige’s [2006] algorithm for estimating the average degree uses only
“degree queries”; that is, “what is the degree of a vertex v”.
Feige shows that in this degree query model, any (randomized)
algorithm that acheives a (2− ε) approximation requires Ω(n) queries.

In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.
Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
n/poly(log n, 1ε))

They show that Ω(
√

(n/ε)) queries is necessary to achieve a (1 + ε)
approximation. in this neighbourhood model.

12 / 33

Understanding the input query model
As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.
Feige’s [2006] algorithm for estimating the average degree uses only
“degree queries”; that is, “what is the degree of a vertex v”.
Feige shows that in this degree query model, any (randomized)
algorithm that acheives a (2− ε) approximation requires Ω(n) queries.
In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.
Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
n/poly(log n, 1ε))

They show that Ω(
√

(n/ε)) queries is necessary to achieve a (1 + ε)
approximation. in this neighbourhood model.

12 / 33

Approximating the size of a maximum matching in a
bounded degree graph

We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching. Let m be smallest possible
maximal matching.

Our goal is to compute with high probability a maximal matching in
time depending only on the maximum degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {ej}
% Note: this will be done “on the fly” as needed
The permutation determines a maximal matching M as given by the

greedy algorithm that adds an edge whenever possible.
Choose r = O(D/ε2) nodes {vi} at random
Using an “oracle” let Xi be the indicator random variable for whether

or not vertex vi is in the maximal matching.
Output m̃ =

∑
i=1...r Xi

13 / 33

Performance and time for the maximal matching

Claims

1 m ≤ m̃ ≤ m + ε n where m = |M|.
2 The algorithm runs in time 2O(D)/ε2

This immediately gives an approximation of the maximum matching
m∗ such that m∗ ≤ m̃ ≤ 2m∗ + εn

A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result

Let δ, ε > 0 and let k = d1/δe. There is a randomized one sided algorithm

(with probability 2/3) running in time 2O(Dk)

ε2k+1 that outputs a maximium

matching estimate m̃ such that m∗ ≤ m̃ ≤ (1 + δ)m∗ + εn.

14 / 33

Property Testing

Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite) or is
in some sense far away from that property.

The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “ε-far” from having the property. The tester
can answer either way if G does not have the property but is
“ε-close” to having the property.

We will usually have a 1-sided error in that we will always answer YES
if G has the property.

We will see what it means to be “ε-far” (or close) from a property by
some examples. See also question 5 in assignment 2.

15 / 33

Tester for linearity of a function

Let f : Zn− > Zn; f is linear if ∀x , y f (x + y) = f (x) + f (y) .

Note: this will really be a test for group homomorphism

f is said to be ε-close to linear if its values can be changed in at most
a fraction ε of the function domain arguments (i.e. at most εn
elements of Zn) so as to make it a linear function. Otherwise f is said
to be ε-far from linear.

The tester

Repeat 4/ε times
Choose x , y ∈ Zn at random

If f (x) + f (y) 6= f (x + y)
then Output f is not linear

End Repeat If all these 4/ε tests succeed then Output linear

Clearly if f is linear, the tester says linear.

For ε < 2/9, if f is ε-far from being linear then the probability of
detecting this is at least 2/3.

16 / 33

Testing a list for monotonicity

Given a list A[i] = xi , i = 1 . . . n of distinct elements, determine if A is
a monotone list (i.e. i < j ⇒ A[i] < A[j]) or is ε-far from being
monotone in the sense that more than ε ∗ n list values need to be
changed in order for A to be monotone.

The algorithm randomly chooses 2/ε random indices i and performs
binary search on xi to determine if xi in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

Clearly the time bound is O(log n/ε) and clearly if A is monotone
then the tester reports monotone.

If A is ε-far from monotone, then the probability that a random binary
search will succeed is at most (1− ε) and hence the probability of the

algorithm failing to detect non-monotonicity is at most (1− ε)
2
ε ≤ 1

e2

17 / 33

Graph Property testing

Graph property testing is an area by itself. There are several models
for testing graph properties.

Let G = (V ,E) with n = |V | and m = |E |.
Dense model: Graphs represented by adjacency matrix. Say that
graph is ε-far from having a property P if more than εn2 matrix
entries have to be changed so that graph has property P.

Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is ε-far from property P is at least εm edges
have to be changed.

In general there are substantially different results for these two graph
models.

18 / 33

The property of being bipartite

In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

Pick a random subset S of vertices of size r = Θ(
log(1

ε
)

ε2
)

Output bipartite iff the induced subgraph is bipartite

Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

The claim is that if G is ε-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

The algorithm runs in time proportional to the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).

19 / 33

Testing bipartiteness in the bounded degree model

Even for degree 3 graphs, Ω(
√
n) queries are required to test for being

bipartite or ε-far from being being bipartite. Goldreich and Ron [1997]

There is an algorithm that uses O(
√
n · poly(log n/ε)) queries. The

algorithm is based on random walks in a graph and utilizes the fact
that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/ε) times
Randomly select a vertex s ∈ V
If algorithm OddCycle(s) returns cylce found then REJECT

End Repeat
If case the algorithm did not already reject, then ACCEPT

OddCycle performs poly(log n/ε) random walks from s each of length
poly(log n/ε). If some vertex v is reached by both an even length and
an odd length prefix of a walk then report cycle found; else report odd
cycle not found

20 / 33

Sublinear space: A slight detour into complexity
theory

Sublinear space has been an important topic in complexity theory
since the start of complexity theory. While not as important as the
P = NP or NP = co −NP question, there are two fundamental space
questions that remain unresolved:

1 Is NSPACE (S) = DSPACE (S) for S ≥ log n ?
2 Is P contained in DSPACE (log n) or ∪kSPACE (logk n)? Equivalently,

is P contained in polylogarthmic parallel time.

Savitch [1969] showed a non deterministic S space bounded TM can
be simulated by a deterministic S2 space bounded machine (for space
constructible bounds S).

Further in what was considered a very surprising result, Immerman
[1987] and independently Szelepcsényi [1987]
NSPACE (S) = co − NSPACE (S). (Savitch’s result was also
considered suprising by some researchers when it was announced.)

21 / 33

USTCON vs STCON

We let USTCON (resp. STCON) denote the problem of deciding if there
is a path from some specified source node s to some specified target node
t in an unidrected (resp. directed) graph G .

As previously mentioned the Aleliunas’ et al [1979] random walk
result showed that USTCON is in RSPACE (log n) and after a
sequence of partial results about USTCON, Reingold [2008] was
eventually able to show that USTCON is in DSPACE (log n)

It remains open if
1 STCON (and hence NSPACE (log n)) is in RSPACE (log n) or even

DSPACE (log n).
2 STCON ∈ RSPACE (S) or even DSAPCE (S) for any S = o(log2 n)
3 RSPACE (S) = DSPACE (S).

22 / 33

The streaming model

In the data stream model, the input is a sequence A of inputs
a1, . . . , am where say each ai ∈ {1, 2, . . . , n}; the stream is assumed
to be too large to store in memory.

We usually assume that m is not known and hence one can think of
this model as a type of online or dynamic algorithm that is
maintaining (say) current statistics.

The space available S(m, n) is some sublinear function. The input
streams by and one can only store information in space S .

In some papers, space is measured in bits (which is what we will
usually do) and sometimes in words, each word being O(log n) bits.

It is also desirable that that each input is processed efficiently, say
log(m + n) and perhaps even in time O(1) (assuming we are counting
operations on words as O(1)).

23 / 33

The streaming model continued

The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular element(s) of the data stream.

Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V ,E), the goal is to
obtain a good approximation using space Õ(|V |) rather than O(|E |).

Most results concern the space required for a one pass algorithm. But
there are other results concerning the tradeoff between the space and
number of passes.

24 / 33

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing element problem

Suppose we are given a stream A = a1, . . . , an−1 and we are promised that
the stream A is a permutation of {1, . . . , n} − {x} for some integer x in
[1, n]. The goal is to compute the missing x .

Space n is obvious using a bit vector cj = 1 iff j has occured.

Instead we know that
∑

j∈A = n(n + 1)/2− x .
So if s =

∑
i∈A ai , then x = n(n + 1)/2− s.

This uses only 2 log n space and constant time/item.

25 / 33

Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose elements
consist of a permutation of n− k distinct elements in {1, . . . , n}. We want
to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai)
j = cj(n)−

∑
i /∈A x ji . Here cj(n) is

the closed form expression for
∑n

i=1 i
j . This results in k equations in

k unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space streaming
algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.

26 / 33

Some well-studied streaming problems

Computing frequency moments. Let A = a1 . . . am be a data stream
with ai ∈ [n] = {1, 2, . . . n}. Let mi denote the number of occurences
of the value i in the stream A. For k ≥ 0, the kth frequency moment
is Fk =

∑
i∈[n](mi)

k . The frequency moments are most often studied
for integral k .

1 F1 = m, the length of the sequence which can be simply computed.
2 F0 is the number of distinct elements in the stream
3 F2 is a special case of interest called the repeat index (also known as

Ginis homogeneity index).

Finding k-heavy hitters; i.e. those elements appearing at least n/k
times in stream A.

Finding rare or unique elements in A.

27 / 33

What is known about computing Fk?

Given an error bound ε and confidence bound δ, the goal in the frequency
moment problem is to compute an estimate F ′k such that
Prob[|Fk − F ′k | > εFk] ≤ δ.

The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

1 For k ≥ 3, there is an Õ(m1−1/k) space algorithm. The Õ notation
hides factors that are polynomial in 1

ε and polylogarithmic in m, n, 1δ .
2 For k = 0 and every c > 2, there is an O(log n) space algorithm

computing F ′0 such that
Prob[(1/c)F0 ≤ F ′0 ≤ cF0 does not hold] ≤ 2/c .

3 For k = 1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(log log n + 1/ε)

4 For k = 2, they obtain space Õ(1) = O(log(1/δ
ε2)(log n + logm))

5 They also show that for all k > 5, there is a (space) lower bound of
Ω(m1−5/k).

28 / 33

Results following AMS

A considerable line of research followed this seminal paper. Notably
settling conjectures in AMS:

The following results apply to real as well as integral k .

1 An Ω̃(m1−2/k) space lower bound for all k > 2 (Bar Yossef et al
[2002]).

2 Indyk and Woodruff [2005] settle the space bound for k > 2 with a
matching upper bound of Õ(m1−2/k)

The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close to Fk
and variance is sufficiently small such that this r.v. can be calculated
under the space constraint.

We will just sketch the (non optimal) AMS results for Fk for k > 2
and the result for F2.

29 / 33

The AMS Fk algorithm
Let s1 = (8

ε2
m1− 1

k)/δ2 and s2 = 2 log 1
δ .

AMS algorithm for Fk

The output Y of the algorithm is the median of s2 random variables
Y1,Y2,,Ys2 where Yi is the mean of s1 random variables Xij , 1 ≤ j ≤ s1
. All Xij are independent identically distributed random variables. Each
X = Xij is calculated in the same way as follows: Choose random
p ∈ [1, . . . ,m], and then see the value of ap. Maintain
r = |{q|q ≥ p and aq = ap}|. Define X = m(rk − (r − 1)k).

Note that in order to calculate X , we only require storing ap (i.e.
log n bits) and r (i.e. at most logm bits). Hence the Each X = Xij is
calculated in the same way using only O(log n + log n) bits.
For simplicity we assume the input stream length m is known but it
can be estimated and updated as the stream unfolds.
We need to show that E[X] = Fk and that the variance Var [X] is
small enough so as to use the Chebyshev inequality to show that
Prob[|Yi − Fk | > εFk is small.

30 / 33

AMS analysis sketch

Showing E [X] = Fk .

m

m
[(1k + (2k − 1k) + . . .+ (mk

1 − (m1 − 1)k))+

(1k + (2k − 1k) + . . .+ (mk
2 − (m2 − 1)k)) ++

(1k + (2k − 1k) + . . .+ (mk
n − (mn − 1)k))]

(by telescoping)

=
n∑
i

mk
i

= Fk

31 / 33

AMS analysis continued

Y is the median of the Yi . It is a standard probabilistic idea that the
median Y of identical r.v.s Yi (each having constant probability of
small deviation from their mean Fk) implies that Y has a high
probability of having a small deviation from this mean.

E [Yi] = E [X] and Var [Yi] ≤ Var [X]/s1 ≤ E [X 2]/s1.

The result needed is that Prob[|Yi − Fk | > εFk] ≤ 1
8

The Yi values are an average of independent X = Xij variables but
they can take on large vales so that instead of Chernoff bounds, AMS
use the Chebyshev inequality:

Prob[|Y − E [Y]| > εE [Y]] ≤ Var [Y]

ε2E [Y]

It remains to show that E [X 2] ≤ kF1F2k−1 and that
F1F2k−1 ≤ n1−1/kF 2

k

32 / 33

Sketch of F2 improvement

They again take the median of s2 = 2 log(1δ) random variables Yi but
now each Yi will be the sum of only a constant number s1 = 16

ε2
of

identically distibuted X = Xij .

The key additional idea is that X will not maintain a count for each
particular value separately but rather will count an appropriate sum
Z =

∑n
t=1 btmt and set X = Z 2.

Here is how the vector < b1, . . . , bn >∈ {−1, 1}n is randomly chosen.

Let V = {v1, . . . , vh} be a set of O(n2) vectors over {−1, 1} where
each vector vp =< vp,1, . . . , vp,n >∈ V is a 4-wise independent vector
of length n.

Then p is selected uniformly in {1, . . . , h} and < b1, . . . , bn > is set
to vp.

33 / 33

