
CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2017

Allan Borodin

March 6, 2017

1 / 1

Lecture 8

Announcements:

Assignment 1 is graded and I will bring graded assignments to class.

I have posted three initial questions for Assignment 2.

I have been reserving Thursdays 3-4 for an office hour but since there
is little interest in the office hour, it seems best to simply email me
and let me know when you would like to see me. I welcome discussing
the course whenever I am free.

Todays agenda:

Some concluding remarks on lecture L7 given by Lalla Mouatadid

Continue randomized algorithms.

1 Discussion of online bipartite matching and the KVV algoritihm.
2 Some comments on extensions and variations of the online bipartite

matching problem.
3 Further comments regarding deterministic and randomized algorithms.
4 Random walks

2 / 1

Some concluding comments on L7

Lecture 7 (given by Lalla Mouatadid) concerned two related topics, namely
what is and is not FTP (a fixed tractable problem), and the topic of
fine-grained complexity.

Both topics introduce more nuanced reductions so as to better understand
the complexity of many search and optimization problems. In both topics,
the work to date has mainly concerned optimal algorithms but one can
also take the same perspective for approximation algorithms.

The focus for the FTP topic is usually NP-hard problems and the goal is
to try to identify parameters that (for some problems) make the problem
tractable (i.e. computable in polynomial time) when one fixes the
parameter. That is, when the parameter value is k and n is the size of the
problem, one can obtain an optimal algorithm in time f (k)poly(n). The
FTP toipic is by now a well established topic with both positive and
negative results (i.e. assumptions that show when a problem is not FTP or
show bounds on how fast f must grow).

3 / 1

Concluding comments on L7 continued

Although examples have existed for some long time, fine-grained
complexity is a relatively new general topic of interest within TCS. The
work to date has been mainly to provide reductions giving evidence that
the complexity of known (and usually relatively simple) polynomial time
algorithms cannot be improved.

22 Hardness of Easy Problems

Notice that by the above definition, the instance sizes may depend on n and Á, and d can
depend on Á, but not on n.

4 Example results

A partial summary of the implications of the main conjectures (3SUM, OV, SETH and
APSP) can be found in Figure 1. Many of the reductions in the known results are quite
intricate. Here we will present a few simple proofs to illustrate the approach.

3SUM k-SAT
8k = O(1)

OV

APSP

Matching
Triangles

Triangle
Collection*

HS

n3
n3

n3

N2

N1.5

N1.5 N1.5

N2

N2

2n

Dynamic problems
e.g. SCC, Max Matching
[6, 9, 55, 57]

Problems in dense graphs:
Radius, Median,

Negative Triangle,
Replacement paths,

Betweenness centrality ...
[4, 63]

n3 N1.5

Vast collection of problems
in Computational Geometry

(starting with [34])
Sequence problems:
Jumbled indexing [12],

Local alignment [8]

N2

(3/2 � ")
approximate
Diameter [23,56],
LCS [2,19],
Edit distance [14],
Frechet dist. [18] ...

(3/2 � ")-
approximate
Radius [7] ...

N2

N2

Figure 1 Partial summary of the implications of the main conjectures. An arrow from problem A

to problem B, where A has a(n) next to it, B has b(n) next to it, implies that A Æa,b B. When the
inputs are graphs, n stands for the number of nodes. N always stands for the total input size. When
both n and N are present for a problem, we assume that N = n2; the meaning is that the reductions
are only for dense graphs in which case the input size is quadratic in n. For k-SAT, n denotes the
number of variables. For the dynamic problems, di�erent key problems can be reduced to di�erent
key problems, and the update/query time tradeo�s vary. References are not comprehensive.

We begin with the starting point of many of the reductions from SETH to problems in P.
This is Williams’ reduction from CNF-SAT to OV.

I Theorem 1 (k-SAT Æ2n,n2 OV [65]). For each positive integer k, the k-SAT problem on n

variables is (2n,n2)-reducible to Orthogonal Vectors on n vectors.

Proof. Let F be a k-SAT formula on n variables. Using the sparsification lemma [40], we
can assume that F has m = O(n) clauses, as this only gives a 2–n overhead for arbitrarily
small – > 0. Create two sets U1,U2 of vectors over {0, 1}m. Split the variables into two
sets V1 and V2 of size n/2 each. For each i œ {1, 2} and each partial assignment „ to the
variables of Vi, add a vector vi,„ to Ui where vi,„[c] = 1 if „ does not satisfy clause c. Now,
v0,„ and v1,Â are orthogonal if and only if for every clause c at least one of „ and Â satisfies
clause c. Thus, there is an orthogonal pair if and only if „ and Â together form a satisfying
assignment. The number of vectors in the instances created is N = O(2n/2) and the number
of coordinates is O(n) = O(logN). J

Due to the use of the sparsification lemma, the above reduction produces an exponential
number of instances. However, the instances do not depend on the answers of the OV oracle.

Figure : Known fine-grained reductions from Virginia V. Williams [2015] survey

4 / 1

Revisiting the KVV randomized online bipartite
matching algorithm

We recall the online unweighted bipartite matching problem.

We have a bipartite graph G with nodes U ∪ V ; nodes in U enter
online revealing all their edges. A deterministic greedy matching
produces a maximal matching and hence a 1

2 approximation.

We again claim that it is easy to see that any deterministic online
algorithm cannot be better than a 1

2 approximation even when the
degree of every u ∈ U is at most 2.

The Karp, Vazirani and Vazirani (KVV) algorithm randomily orders
the offline nodes in V and then when an online node u ∈ U appears,
it matches u to the highest ranked unmatched v ∈ V such that (u, v)
is an edge (if such a v exists).

Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.

5 / 1

The worst case adversarial inapproximation

We will consider two proofs of the KVV approximation but first it is worth
noting that no deterministic or randomized algorithm can (asymptotically)
achieve an approximation better than 1− 1/e.

To derive negative results (e.g. inapproximations or lower bounds on time
complexity) for randomized algorithms for online or offline algorithms, one
often appeals to the Yao Principle.

Yao Principle for online algorithm approximations

Let A be a class of randomized online algorithms. To obtain a lower
bound on the worst case approximation ratio for inputs with n input items,
it is sufficient to find a distribution on input sequences and derive a bound
for all deterministic algorithms iin the class A. The Yao Principle is a
consequence of the von Neumann minimax theorem for zero sum games.

For example, consider the online (n, n) biparitite problem. Consider the
graph represented by an upper triangular matrix. It can be shown that as
n→∞, the expected (wrt. column permutations) approximation ratio for
any deterministic online algorithm limits (from above) to 1− 1/e.

6 / 1

The worst case adversarial inapproximation

We will consider two proofs of the KVV approximation but first it is worth
noting that no deterministic or randomized algorithm can (asymptotically)
achieve an approximation better than 1− 1/e.

To derive negative results (e.g. inapproximations or lower bounds on time
complexity) for randomized algorithms for online or offline algorithms, one
often appeals to the Yao Principle.

Yao Principle for online algorithm approximations

Let A be a class of randomized online algorithms. To obtain a lower
bound on the worst case approximation ratio for inputs with n input items,
it is sufficient to find a distribution on input sequences and derive a bound
for all deterministic algorithms iin the class A. The Yao Principle is a
consequence of the von Neumann minimax theorem for zero sum games.

For example, consider the online (n, n) biparitite problem. Consider the
graph represented by an upper triangular matrix. It can be shown that as
n→∞, the expected (wrt. column permutations) approximation ratio for
any deterministic online algorithm limits (from above) to 1− 1/e. 6 / 1

Alternative proofs of the KVV result

As discovered by Goel and Mehta [08] (and independently discovered but
unpublished by Krohn and Varadarajan), there was a flaw (in one of the
main lemmas) in the KVV analysis of the Ranking algorithm. Goel and
Mehta and ohers have now provided proofs of the KVV result.

Goel and Mehta [08] (in the context of a more general problem) gave
the first correct proof using a “factor revealing LP”.

Birnbaum and Mathieu [08] gave a simplified purely combinatorial
proof.

Devanur, Jain and Kleinberg gave what they believed to be “the
simplest analysis yet” using a dual fitting analysis. The hope is that
this analysis might lead to an analysis of the online budgetted
allocation problem.
Note: There is something both elegant but yet (without
understanding previous work) mysterious in the Devanur et al analysis
of the KVV algorithm.

7 / 1

Comments on the Birnbaum and Mathieu proof

The worst case examples are (n, n) graphs with a perfect matching.

In particular, for n = 2, the precise expected approximation ratio is 3
4 .

The inapproximation can be seen by using the Yao principle and the
approximation is a simple analysis.

The main lemma in the analysis

Let xt be the probability (over the random permutations of the vertices in
V) that the vertex of rank t is matched. Then the probability that the
vertex of rank t is not matched is 1− xt ≤ 1

n

∑t
s=1 xs

Letting St =
∑t

s=1 xs the lemma can be restated as
St(1 + 1/n) ≥ 1 + St−1 for all t. Given that the graph has a perfect
matching, the expected competitive ratio is the infimum Sn/n. We
set all inequalities to equalities and solve the recurrence. It is shown
that 1

nSn ≥ 1− (1− 1
n+1)n → 1− 1/e from below (whereas the

known inapproximation approaches 1− 1/e from above.

8 / 1

The proof of the main lemma in the Birnbaum and
Mathieu proof

The proof of the main lemma depends on a “technical modification” of
the following simple lemma:

Simple lemma about KVV Ranking algorithm

Let the mapping m∗ : U → V be a perfect matching and let σ be a
(random) permutation of the offline vertices V . Let m∗(u) = v . Then if
KVV does not match v , it must match u to some v ′ with rank
σ(v ′) < σ(v).

Let Rt−1 be the vertices of U of rank at most t − 1 that are matched by
KVV. If u and Rt−1 were independent then the main lemma would be
slightly better as it would immediately follow that 1− xt ≤

∑
1≤s≤t−1 xs

since the event u ∈ Rt−1 would have probability Rt−1

n .

But u is not indpendent of Rt−1 so that is the need for the technical
modification that will render u independent of the offline permutation σ
that ranks the offline vertices.

9 / 1

The proof of the main lemma in the Birnbaum and
Mathieu proof

The proof of the main lemma depends on a “technical modification” of
the following simple lemma:

Simple lemma about KVV Ranking algorithm

Let the mapping m∗ : U → V be a perfect matching and let σ be a
(random) permutation of the offline vertices V . Let m∗(u) = v . Then if
KVV does not match v , it must match u to some v ′ with rank
σ(v ′) < σ(v).

Let Rt−1 be the vertices of U of rank at most t − 1 that are matched by
KVV. If u and Rt−1 were independent then the main lemma would be
slightly better as it would immediately follow that 1− xt ≤

∑
1≤s≤t−1 xs

since the event u ∈ Rt−1 would have probability Rt−1

n .

But u is not indpendent of Rt−1 so that is the need for the technical
modification that will render u independent of the offline permutation σ
that ranks the offline vertices.

9 / 1

The Devanur et al primal dual analsyis of KVV

The offline vertices in L (resp. online vertices in R) will be referred to by
indices i (resp. j). The KVV algorithm can be restated as follows:

versions of these lemmas are also present in [GM08] and [BM08], both of which give alternate proofs
of [KVV90]. Finally, we note that a blog post [Mat11] by Claire Mathieu, who is also the second author of
the second paper, gives an (informal but complete) explanation of our framework.

2 Algorithm and Analysis

We begin with a reinterpretation of the RANKING algorithm, in a way that is conducive to our analysis.
Instead of picking a random total ordering of the vertices in L, each vertex in L picks a random number in
[0, 1] and a vertex j 2 R, upon its arrival, is assigned to the unmatched neighbor who picked the lowest
number. The algorithm is presented as Algorithm 1 below.

Algorithm 1: The RANKING algorithm.

foreach i 2 L do
Pick Yi 2 [0, 1] uniformly at random

foreach j 2 R do
When j arrives, let N(j) denote the set of unmatched neighbors of j;
if N(j) = ; then

j remains unmatched
else

Match j to arg min{Yi : i 2 N(j)}

To analyze the algorithm, we note the standard LP relaxation for matching and its dual.

maximize
X

(i,j)2E

xij s.t. minimize
X

i2L

↵i +
X

j2R

�j s.t.

8 i 2 V,
X

j:(i,j)2E

xij 1. 8 (i, j) 2 E,↵i + �j � 1.

8 (i, j) 2 E, xij � 0. 8 i, j,↵i,�j � 0.

Our analysis constructs a dual solution which is also randomized. The duals we construct may not
always be feasible. The competitive ratio of F 2 [0, 1] will follow from the fact that the value of the dual
solution is always a factor 1/F of the size of the matching found, and that the expectation of the duals is
feasible.

Our construction of the duals depends on a monotone non-decreasing function g : [0, 1] ! [0, 1]. We
later identify other properties of g that we need in order to prove a competitive ratio of F . Whenever i is
matched to j, let

↵i = g(Yi)/F, �j = (1 � g(Yi))/F.

For all unmatched i and j, set ↵i = �j = 0. It will be useful to interpret the algorithm as follows: on
matching i to j, we generate a value of 1 for the primal, which translates to a value of 1/F for the dual.
Each unmatched vertex i 2 L that is a neighbor of j offers (1 � g(Yi))/F of this value to j (to be assigned
to �j), while keeping the rest to itself (to be assigned to ↵i). Then j is matched to the vertex that makes the
highest offer.

Before we show that the expectation of the duals is feasible, we need certain properties of the algorithm
specified by the following two lemmas. These properties are well-known and form the basis of all the earlier
proofs. Let (i, j) 2 E be any edge in the graph. Consider an instance of the algorithm on G \ {i}, with the

4

The LP relaxation and the dual of the standard IP for bipartite matching
are :

maximize
∑

(i ,j)∈E xij minimize
∑

i∈L αi +
∑

j∈R βj subject to
∑

j :(i ,j)∈E xij ≤ 1 ∀ ∈ L αi + βj ≥ 1 ∀(i , j) ∈ E

All variables are non negative.

10 / 1

Devanur et al KVV analysis continued

The dual variables αi βj will be set randomly (as a function of the random
Yi in the algorithm) and the primal xij variables will be set integrally to
insure a feasible matching.

The essential features of the analysis are:

For all unmatched i and j by KVV, xij = αi = βj = 0

If j is matched to i by KVV, then xij = 1, αi = g(Yi)/F and
βj = 1− αi where (the somewhat mysterious)
g(y) = ey−1 and F = 1− 1

e is the desired approximation ratio.

Setting the primal to xij = 1 then corresponds to setting the
corresponding dual αi + βj = 1/F . This insures that the value of the
dual “solution” is equal to 1/F · (value of the constructed match).

If the dual solution were feasible then by the usual primal dual
argument, the approximation would be an F approximation since
IP − OPT ≤ LP − OPT = DUAL− OPT ≤ computed dual

= 1
F · KVV solution

11 / 1

Completing the sketch of the Devanur et al analysis

However, the dual “solution” is not necessarily feasible. But what can
be shown is that the expectation (over the {Yi}) is feasible for every
(i , j) ∈ E which implies that the desired result that KVV is an F
approximation in expectation.

The technical part of the analysis is to show :

2. the expectations of the randomized dual variables
form a feasible dual solution.

The expectation of P is then at least F · OPT where
OPT is the value of the optimum solution.

Proof. Since P � FD always, taking expectations,
E[P] � F ·E[D]. The cost of the dual solution obtained
by taking the expectations of the randomized dual
variables is E[D] and they form a feasible dual solution,
therefore E[D] � OPT. Hence E[P] � F · OPT.

Our construction of the duals depends on a mono-
tone non-decreasing function g : [0, 1] ! [0, 1]. We later
identify other properties of g that we need in order to
prove a competitive ratio of F . Whenever i is matched
to j, let

↵i = g(Yi)/F, �j = (1 � g(Yi))/F.

For all unmatched i and j, set ↵i = �j = 0. It
will be useful to interpret the algorithm as follows: on
matching i to j, we generate a value of 1 for the primal,
which translates to a value of 1/F for the dual. Each
unmatched vertex i 2 L that is a neighbor of j o↵ers
(1 � g(Yi))/F of this value to j (to be assigned to �j),
while keeping the rest to itself (to be assigned to ↵i).
Then j is matched to the vertex that makes the highest
o↵er.

Before we show that the expectation of the duals
is feasible, we need certain properties of the algorithm
specified by the following two lemmas. These properties
are well-known and form the basis of all the earlier
proofs. Let (i, j) 2 E be any edge in the graph.
Consider an instance of the algorithm on G \ {i}, with
the same choice of Yi0 for all other i0 2 L. Let yc be
the value of Yi0 for the i0 that is matched to j. Define
yc to be 1 if j is not matched. Let �c

j be the value of
�j in this run. We further impose that g(1) = 1, which
implies �c

j = (1 � g(yc))/F .

Lemma 2.2. (Dominance Lemma) Given Yi0 for all
other i0 2 L, i gets matched if Yi < yc.

Proof. Suppose i is not matched when j arrives. This
means that the run of the algorithm until then is
identical to the run without i. From the definition of
yc, in the run without i, j is matched to i0 such that
Yi0 = yc. Since Yi < yc, j is matched to i.

Lemma 2.3. (Monotonicity Lemma) Given Yi0 for
all other i0 2 L, for all choices of Yi, �j � �c

j .

Proof. Consider executing the algorithm on graphs G
and G \ {i} in parallel. At the start of every step of the

two parallel executions, the unmatched vertices in L for
the G execution constitute a superset of the unmatched
vertices in L for the G \ {i} execution. This statement
is easily proven by induction: given that it holds at the
start of one step, the only way it could be violated at
the start of the next step is if the G execution chooses
a vertex i0 2 L that is also unmatched, but is not
chosen, in the G \ {i} execution. Instead the G \ {i}
execution must choose some other vertex i00 such that
Yi00 < Yi0 . By our induction hypothesis i00 was also
unmatched in the G execution, contradicting the fact
that the algorithm chose i0 instead.

When node j arrives, its unmatched neighbors in
the G execution form a superset of its unmatched
neighbors in the G \ {i} execution, so in both the
executions j has an unmatched neighbor whose Y -value
is yc. If the algorithm instead chooses another neighbor
of j, its Y -value can be at most yc and hence, by the
monotonicity of g, we have �j � �c

j .

We now show that for any g that satisfies a certain
integral equation, the above properties imply a compet-
itive ratio of F for ranking. This integral equation is
also at the heart of the deterministic primal-dual anal-
ysis for the fractional matching problem. We will later
give a short proof of this as well, in Section 3.2.

Lemma 2.4. If g and F are such that

(2.1) 8 ✓ 2 [0, 1]

Z ✓

0

g(y) dy + 1 � g(✓) � F,

then the duals constructed are feasible in expectation.

Proof. We show that for all (i, j) 2 E,

EYi
[↵i + �j] � 1

for all choices of Yi0 for all i0 6= i 2 L. By the Dominance
Lemma (Lemma 2.2) i is matched whenever Yi yc.
Hence

EYi
[↵i] �

Z yc

0

g(y) dy/F.

By the Monotonicity Lemma (Lemma 2.3), �j � �c
j =

(1 � g(yc))/F for all choices of Yi. The lemma now
follows from condition (2.1) in the hypothesis.

It is easy to solve the integral equation (2.1) along
with the boundary condition g(1) = 1 to get an explicit
function g. (2.1) does not have a solution satisfying
g(1) = 1 for all values of F ; one can also calculate the
largest value of F for which it does have a solution,
which turns out to be 1 � 1/e.

Theorem 2.1. ranking is 1 � 1/e competitive.

104 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
17

 to
 1

28
.1

00
.3

.1
10

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

The proof is completed by showing that for all (i , j) ∈ E

1 EYi [αi] ≥
∫ θ
0
g(y)dy/F and

2 EYi [βj] ≥ (1− g(θ))/F
3 Hence EYi [αi + βi] ≥ 1

12 / 1

Getting past the (1− 1/e) bound: stochastic
optimization

The ROM model is an example of stochastic optimization. There are
other stochastic optimization models that are perhaps more naturally
studied, namely sampling inputs from known and unknown
distributions. In particular, for online algorithms we can consider the
i.i.d model where each online input item is independently drawn from
some (known or unknown) distribution.

The KVV algorithm can be interpreted as a deterministic algorithm
(which we can call Fixed Ranking) in the ROM model and hence
achieveing the 1− 1/e approximation. For the ROM model, it is not
known if there ia a deterministic online algorithm with approximation
better than 1− 1/e.

Karande et al [2011] show that the randomized KVV Ranking
algorithm achieves approximation .653 in the ROM model and is no
better than .727.

13 / 1

Ranking in the ROM model continued

Mahdian and Yan improve the Karande et al bound to achieve
approximation .696 for Ranking in the ROM model. Their analysis
uses a family of “strongly factor revealing LPs”.
Karande et al also show that when the adversarial graph has many
perfect (or near perfect) matchings, the approximation is much
improved. They observe that this result explains “a puzzling mystery”
as to simulations of Ranking on the nemesis graph for Ranking in the
adversarial input model (i.e. the graph represented by an upper
triangular adjacency matrix) showing that Ranking has ratio no better
than 1− 1/e. This graph has ω(1) almost perfect matchings and
hence Ranking will have an expected ratio approaching 1 in the ROM
model on this nemesis graph.
Karande, et al [2011] also show that an approximation in the ROM
model implies the same approximation in the unknown .i.d.
distribution model.
These results for the ROM model follow earlier work on the known
i.i.d. model starting with Feldman et al [2009].

14 / 1

ROM approximation implies unknown i.i.d.
approximation

The Kanada observation is short and simple but not at all obvious until it
was stated. And this useful observation applies to any online problem.

Suppose we have an unknown i.i.d. distribution D. Partition the possible
input sequences into classes, where each class contains the same multi set
of input items. Furthermore, each class contains n! sequences each
occuring with equal probability (since D was i.i.d.). Given that we have
(say) an algorithm A with an α approximation in the ROM model, then A
obtains an α approximation for each class and then we obtain the desired
result by taking the expectation over all classes.

It follows that the randomized Ranking algorithm obtains a .696
approximation in the unknown and known i.i.d. models. Unlike many of
the i.i.d. approximations, the current ROM approximations do not require
knowing n nor make any further assumptions (other than i.i.d.) about the
distribution. As far as I know, there are no other approximation results for
online bipartite matching in the i.i.d unknown distribution model.

15 / 1

ROM approximation implies unknown i.i.d.
approximation

The Kanada observation is short and simple but not at all obvious until it
was stated. And this useful observation applies to any online problem.

Suppose we have an unknown i.i.d. distribution D. Partition the possible
input sequences into classes, where each class contains the same multi set
of input items. Furthermore, each class contains n! sequences each
occuring with equal probability (since D was i.i.d.). Given that we have
(say) an algorithm A with an α approximation in the ROM model, then A
obtains an α approximation for each class and then we obtain the desired
result by taking the expectation over all classes.

It follows that the randomized Ranking algorithm obtains a .696
approximation in the unknown and known i.i.d. models. Unlike many of
the i.i.d. approximations, the current ROM approximations do not require
knowing n nor make any further assumptions (other than i.i.d.) about the
distribution. As far as I know, there are no other approximation results for
online bipartite matching in the i.i.d unknown distribution model.

15 / 1

Results for the (known) i.i.d model

Beyond the usual issues that for online algorithms (e.g. is the number
n of online input items known), there are some issues particular to the
i.i.d models. Namely, do results depend on the size of the support of
the distribution, and does the distribution have “integer type”?
Feldman et al [2009] study the known distribution case and show a
randomized algorithm that first computes an optimal offline solution
(in terms of expectation) and uses that to guide an online allocation.
They achieve a .67 approximation (improved to .699 by Bahmani and
Kapralov [2010] and also show that no online algorithm can achieve
better than 26/27 (improved by Bahmani and Kapralov to .902).
Further improvements in the known i.i.d. approximations are:

1 Manshadi et al [2011]]: .706 for integer (resp. .702 for arbitrary type)
and polynomial support distributions.

2 Jaillet and Lu [2012]: .725 for integer type (resp. .706 for arbitarry
type). They also introuce a Poisson i.i.d. arrival process.

3 Bruback et al [2016: .7299 for integer type.

Manshadi et al also obtain a .823 inapproximation which implies the
same (and current best known) inapproximation for the ROM model.16 / 1

Extensions of online bipartite matching

Vertex and edge weighted online matching

Adwords (matching with offline budgets and edge weights)

Applying the priority framework to matching problems

Stochastic rewards matching (edges occur with probability)

Online with Reassignments

17 / 1

The adwords problem: an extension of bipartite
matching

In the (single slot) adwords problem, the nodes in U are the online
queries and the nodes in V are offline advertisers. For each query q
and advertiser i , there is a bid bq,i representing the value of this query
to the advertiser.

Each advertiser also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets or to maximize profit when no bidder provides more profit
than their budget. Without budgets and when each advertiser will
pay for at most one query, the problem then is edge weighted
bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.

18 / 1

Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).

19 / 1

Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.

We note that some restriction has to be made for the edge weighted
problem in the ROM model as this model generalizes the secretary
problem for which a 1/e inapproximation is known.

For the known i.i.d. integer type model, Haeupler et al [2011] give a
.667 approximation and this is improved in Brubach et al [2016] to
.705.

20 / 1

Vertex weighted bipartite matching for the
adversarial worst case

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the offline vertices v ∈ V all
have a known weight wv and the goal is now to maximize the
weighted sum of matched vertices in V when again vertices in U
arrive online.
This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.
It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve an adversarial worst casse 1-1/e approximation for this class
of vertex weighted bipartite matching.
The previously mentioned i.i.d. approximation resutls by Jaillet and
Lu, and Brubach et al for bipartite matching were shown to apply to
the vertex weighted case. 21 / 1

The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e−(1−x)

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.

22 / 1

Some concluding remarks on max-sat and bipartite
matching

A research problem of current interest (work with Nicolas Pena) is to
see to what extent some form of an extended online framework can
yield a deterministic online bipartite matching algorithm with
approximation ratio better than 1/2.

As mentioned before, we can show that a 3/4 approximation for
(submodular) max-sat can be obtained by a deterministic “poly
width” online algorithm.

One can formulate the Buchbinder and Feldman method in the
framework of the priority BT model (pBT) of Alekhnovich et al. Can
a bounded width online (or priority) BT algorithm obtain a 3/4 ratio?

23 / 1

Online and priority width inapproximations for
max-sat and bipartite matching

We have the following width inapproximation results.

To improve upon the 3
4 max-sat approximation (using online width

2n) result, we need exponential width. More precisely,
For any ε > 0 there exists δ > 0 such that, for k < eδn, no online
width-cut-k algorithm can achieve an asymptotic approximation ratio
of 3/4 + ε for unweighted exact max-2-sat with input model 2.

For any ε > 0 there exists δ > 0 such that, for k < eδn, no pBT
width-cut-k algorithm can achieve an asymptotic approximation ratio
of 21/22 + ε for unweighted max-2-sat with input model 3.

For any ε > 0, no bounded width online algorithm can achieve a 1
2 + ε

approximation for bipartite matching.

For any ε > 0, no priority algorithm can achieve a 1
2 + ε

approximation for bipartite matching.

24 / 1

A possible candidate for a “small” width
deterministic online bipartite matching

Here is an idea for a max-of-k (for any number k , but the interesting
question is what approximation ratio can we achieve when k ∈ nO(1)). Let
M1, . . . ,Mk be the matchings of the algorithm. Define the load of an
offline vertex as the number of matchings in which it has been used. The
algorithm does the following: when processing an online vertex, try to
balance out the loads of the available offline vertices as much as possible.
The intuition behind this is that we want the offline vertex with minimum
load to have as high a load as possible, so if the adversary chooses to
never show this vertex again, the number of matchings that will not match
the vertex is as low as possible. The way of balancing loads can be made
more precise or it could be left as an arbitrary choice for the algorithm.
Nonetheless, this algorithm is fairly efficient and it would be interesting to
see whether an algorithm that maintains polynomially many candidate
matchings constructed this way can achieve an approximation ratio greater
than 1/2.

25 / 1

Some additional thoughts relating to online
algorithms

In the online research area, there are various studies of “online
algorithms with advice”. There are two such models, one being that
the online algorithm is initially given some small α(n) bits of advice
bits, based on the entire input.
While certain advice strings seem reasonable (e.g. if they can be
computed easily), the framework here allows any advice string.
Mikkelsen [2015] shows that no deterministic online algorithm with
sublinear o(n) advice can be substantially better than any online
randomized algorithm without advice.
It follows that we cannot obtain anything substantially better than a
(1− 1

e) apprroximation for online unweighted bipartite matching with
o(n) advice.
By a result of Bockenhauer [2011] there is an online algorithm using
O(log n) advice that achieves a (1− ε)(1− 1

e) approximation for
unweighted bipartite matching, thus matching what is the best
possible approximation with o(n) advice. 26 / 1

Additional online thoughts continued

Any online r bit advice algorithm immediately implies a non-uniform
max-of-2r online algorithm.

Our inapproroximation about the limitation of width bounded online
BT algorithms and max-of-k online algorithms for bipartite matching
can then be used to show that Ω(log log n) advice is needed to
achieve an approximation better than 1

2 + ε.

This advice result improves upon an Ω(log log log n) lower bound on
advice in a somewhat more restricted setting.

These resuls show why it will be hard to prove inapproximation results
about poly width online algorithms for bipartite matching. And also
why it is problematic to establish inapproximations for multi-pass
online algorithms.

27 / 1

Random walks and the random algorithm for 2-Sat
and k-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .
There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).
Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi) = 1− τ(xi). 28 / 1

The expected time to reach a satisfying assignment

When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.29 / 1

The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

30 / 1

Stationary distributions

Define qt = (qt1, q
t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi . 31 / 1

Back to random walks on graphs

Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most 2n2

to find a satisfying assignment in a satisfiable formula. Use Markov
inequality to obtain probability of not finding satisfying assignment.

32 / 1

Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). Or we could view the approach as
a local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

33 / 1

Schöning’s k-SAT algorithm

The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e)c .34 / 1

	Lecture 8

