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Lecture 6

Announcements:

Assignment 1 is due today. Any questions?

I am reserving Thursdays 3-4 for an office hour but since there is little
interest in the office hour, it might be best to simply email me and let
me know when you would like to see me. I welcome discussing the
course whenever I am free.

I wanted to try to arrange a 1 or 2 hour lecture outside of the usual
time but received little feedback. So I am now working with Lalla
Mouatadid and she will, give the lecture on February 27. We are
planning a lecture on “fine grained complexity”.

I plan to assign some questions for assignment 2 this week.

Todays agenda:

Continue randomized algorithms.
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The naive randomized algorithm for exact
Max-k-Sat

We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
For the following discussion of Max-Sat, we will follow the prevailing
convention by stating approximation ratios as fractions c < 1.

Recall the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied. We considered this problem when discussing
local search.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is an NP hard problem for k ≥ 3 and moreoever, while
2-SAT is polynomial time computable, Max-2-Sat is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability. 3 / 1



Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.
Since each clause Ci has k literals, the probability that a random
assignment of the variables occuring in Ci will set the clause to be
satisfied is exactly 2k−1

2k
. Hence E [weight of satisfied clauses] =

2k−1
2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.
Similatr to the local seacrh analysis, this ratio is not only an
approximation ratio but is also a “totality ratio”; the algorithms
expected value is a factor 2k−1

2k
of the sum of all clause weights

whether satisfied or not.
We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.4 / 1



Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F )|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F )|xi∈u{0,1}] as
E[w(F )|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F )|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
change in expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?
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(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8 ).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for exact Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved (as we will see) by the

use of semi-definite programming (SDP).

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k literals. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be (say) unit
clauses)?

Note that the naive randomized algorithm computes an assignment
for any propositional formula but the question is how good is the
approximation.
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Johnson’s (1974) deterministic max-sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
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Johnson’s algorithm is the derandomization of the
naive randomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary (weighted) Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .797 (resp. .931) using semi-definite
programming and “randomized rounding”.
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Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm,, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is an example of the random order model
(ROM), that was in one of the questions in Assignment 1.
To precisely model the Max-Sat problem within the online of priority
frameworks, we need to specify the input model.
In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

Model 0 Each propositional variable x is represented by the names of the
positive and negative clauses in which it appears.

Model 1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively.

Model 2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

Model 3 The variable x is represented by a complete specification of each clause
it which it appears.

The naive randomized algorithm can be implemented in a “model 0”
where we don’t even specify the lenths of the clauses and Johnson’s
algorithm can be implemented using input model 1.
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Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnsons algorithm in the ROM model is at
most 2

√
157 ≈ .746 < 3/4 , the ratio first obtained by Yannakakis’

IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm”; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.
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A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.
In terms of priority algorithms this is a randomized online algorithm
(i.e. adversary chooses the ordering) where the variables are
represented within input modeli 1.
This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is input model 0.
Poloczek [2011] shows that no deterministic priority algorithm can
achieve a 3/4 approximation within input model 2. This provides “a
sense” in which to claim that the Poloczek and Schnitger Slack
algorithm “cannot be derandomized”.
The best deterministic online or priority algorithm within the most
powerful (and natural) input model 3 remains an open problem as
does the best randomized priority algorithm and the best
deterministic or randomized ROM algorithm. 11 / 1



Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi ) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.
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Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k )k . Then

Prob[Cj is satisifed ] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e ) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.
(The derandomized algorithmi will still be solving LPs.)
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The SDP/vector program approach: Max-2-Sat

We briefly consider an important extension of the IP/LP approach,
namely representing a problem as a strict quadratic program and then
relaxing such a program to a vector program. Vector programs are
known to be equivalent to semidefinite programs.

For our purposes of just introducing the idea of this approach we will
not discuss SDP concepts but rather just note that such programs
(and hence vector programs) can be solved to arbitrary precision
within polynomial time. This framework provides one of the most
powerful optimization methods.

We illustrate the approach in terms of the Max-2-Sat problem. A very
similar algorithm and analysis produces the same approximation ratio
for the Max-Cut problem.
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The quadratic program for Max-2-Sat

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C ) of each clause C
in terms of these {−1, 1} variables.

1 val(xi ) = (1 + yiy0)/2
val(x̄i ) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C ) = 1− val(x̄i ∧ x̄j) = 1− ( 1−yiy0

2 )(
1−yjy0

2 ) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C ) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C ) = (3− yiy0 − yjy0 − yiyj)/4
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The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi )

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.

The corresponding quadratic program for the weighted Max-Cut
problem is to have {−1, 1} variables {yi} to express which side of the
cut a vertex is on. Then the Max-Cut problem is to maximize
1
2

∑
1≤i<j≤n wij(1− yiyj). The Max-Cut problem is an example of the

unconstrained non-monotone submodular maximization problem
(USM) which we will soon consider.
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The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).
The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.
The rounded solution then has expected value

2
∑

aijProb[yi = yj ] +
∑

bijProb[yi 6= yj ] ; Prob[yi 6= yj ] =
θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).
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Submodular maximization problems; An important
diversion before returning to MaxSat

A set function f : 2U → < is submodular if
f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for all S ,T ⊆ U.

Equivalently, f is submodular if it satisfies decreasing marginal gains;
that is,
f (S ∪{x})− f (S) ≥ f (T ∪{x})− f (T ) for all S ⊆ T ⊆ U and x ∈ U

We will always assume that f is normalized in that f (∅) = 0 and
non-negative.

Submodular functions arise naturally in many applications and has
been a topic of much recent activity.

Probably the most frequent application of (and papers about)
submodular functions is when the function is also monotone
(non-decreasing) in that f (S) ≤ f (T ) for S ⊆ T .

Note that linear functions (also called modular) functions are a
special case of monotone submodular functions.

18 / 1



Submodular maximization continued

In the submodular maximization problem, we want to compute S so as to
maximize f (S).

For monotone functions, we are maximizing f (S) subject to some
constraint (otherwise just choose S = U).

For the non monotone case, the problem is already interesting in the
unconstrained case. Perhaps the most prominent example of such a
problem is Max-Cut (and Max-Di-Cut).

Max-Cut is an NP-hard problem. Using an SDP approach just as we
will see for the Max-2-Sat problem yields the approximation ratio
α = 2

π min{0≤θ≤π}
θ

(1−cos(θ) ≈ .87856. Assuming UGC, this is optimal.

For a submodular function, we may be given an explicit representation
(when a succinct representation is possible as in Max-Cut) or we
access the function by an oracle such as the value oracle which given
S , outputs the value f (S) and such an oracle call is considered to
have O(1) cost. Other oracles are possible (e.g. given S , output the
element x of U that maximizes f (S ∪ {x})− f (S)).
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Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation was augmented by Dobzinski and
Vondrak showing the same bound for an explicitly given instance
under the assumption that RP 6= NP.
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The Buchbinder et al (1/3) and (1/2)
approximations for USM

In the FOCS [2012] conference, Buchbinder et al gave an elegant linear
time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi
then Xi := Xi−1 ∪ {ui};Yi := Yi−1

else Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For
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The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.
That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.
Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.
This fact leads to the main lemma for the deterministic case:

f (OPTi−1 − f (OPTi ) ≤ [f (Xi − f (Xi−1] + [f (Yi )− f (Yi−1]

Here OPTi = (OPT ∪ {Xi}) ∩ Yi so that OPTi coincides with Xi and
Yi for elements 1, . . . i and coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and OPTn = Xn = Yn. That
is, the loss in OPT s value is bounded by the total value increase in
the algorithm’s solutions.
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Applying the algorithmic idea to Max-Sat

Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘
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Buchbinder et al Submodular Max-Sat

Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P ) + f2(C ∩ (C \ P )).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P ).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P ) and f2(C ∩ (C \ P )).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N ) ≥ f1(N ) + f2(N ) ≥ g(OPT ), the claimed
(3/4)-approximation is obtained.
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Further discussion of the Unconstrained Submodular
Maximiation and Submodular Max-Sat algorithms

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic online or priority style
algorithm by a result of Huang and Borodin [2014]. Like the Poloczek
result, we claime this was “in some sense” evidence that this
algorithm cannot be derandomized.

Their algorithm is shown to have a 3
4 approximation ratio for

Monotone Submodular Max-Sat.

Poloczek et al (to appear in SICOMP) show that the Buchbinder et al
algorithm turns out to be equivalent to a previous Max-Sat algorithm
by van Zuylen.
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The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
not yet unsatisfied.
Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi ) be the weight of satisfied clauses (resp., unsatsifed clauses) with
respect to Si . Let Bi = 1

2 (SATi + W − UNSATi ) where W is the total
weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi ) be the value of w(Bi )− w(Bi−1) when xi is
set to true (resp. false).
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The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi ) be the value of w(Bi )− w(Bi−1) when xi is
set to true (resp. false).
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The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remiaing n− i
variables are set as in x∗. (Note: x∗ is not calculated.)

The analysis follows as in Poloczek and Schnitger, Poloczek, and explicitly
in Buchbinder et al. One shows the following:

ti + fi ≥ 0

E[w(OPTi−1)− w(OPTi )] ≤ E[w(Bi )− w(Bi−1)]
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Derandomizing the algorithms for USM and
Submodular Max-Sat: Buxchbinder and
Feldman[2016]

Contrary to the Poloczek, (resp. Huang and B.) priority
inapproximations for Max-Sat (resp. USM), there is a sense in which
these algorithms can be derandomized.
In fact the derandomization becomes an “online algorithm” in the
sense that an adversary is choosing the order of the input variables.
However rather than creating a single solution, the algorithm is
creating a tree of solutions and then takng the best of these.
The analysis of the randomized USM approximation bound shows that
at each iteration of the algorithm the following linear inequality holds:

E [f (OPTi−1 − f (OPTi )] ≤ 1

2
E [f (Xi )− f (Xi−1) + f (Yi )− f (Yi−1]

That is, the expected change in restricting OPT in an iteration (by
setting the i th variable) is bounded by the average change in the two
values being maintained by the algorithm.
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Continuing the Buchbinder and Feldman
derandomization idea

These inequalities induce two additional inequalties per iteration on
the distributions of solutions that can exist at each iteration.

This then gets used to describe an LP corresponding to these 2i
constraints we have for the distributions that hold at each iteration of
the algorithm.

But then using LP theory again (i.e. the number of non-zero variables
in a basic solution). It follows that we only need distributions with
support 2i at each iteration rather than the naive 2i that would follow
from just considering the randomized tree.

Finally, since there must be at least one distribution (amongst the
final 2n distributions) for which the corresponding solution is at least
as good as the expected value. Thus if suffices to take the max over a
“small” number of solutions.
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Randomized online bipartite matching and the
adwords problem.

We return to online algorithms and algorithms in the random order
model (ROM). We have already seen evidence of the power of
randomization in the context of the USM and MaxSat problems.

Another nice sequence of results begins with a randomized online
algorithm for bipartite matching due to Karp, Vazirani and Vazirani
[1990]. We quickly overview some results in this area as it represents
a topic of continuing interest. (The FOCS 2012 conference had a
session of three papers related to this topic.)

In the online bipartite matching problem, we have a bipartite graph G
with nodes U ∪ V . Nodes in U enter online revealing all their edges.
A deterministic greedy matching produces a maximal matching and
hence a 1

2 approximation.

It is easy to see that any deterministic online algorithm cannot be
better than a 1

2 approximation even when the degree of every u ∈ U
is at most (equal) 2
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The randomized ranking algorithm

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.
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The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and then another proof in Birnbaum and Mathieu [2008].

Recall that this positive result can be stated either as the bound for a
particular deterministic algorithm in the stochastic ROM model, or as
the randomized Ranking algorithm in the (adversarial) online model.

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727.
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And some more recent progress

Manshadi et al give a .823 inapproximation for biparitie matching in
the known distribution model. This implies the same inapproximation
in the ROM model inproving the 5

6 inapproximation of Goel and
Mehta.

In Lecture 9 we will mention some extensions (budgetted bidders as in
the adwords problem) of the basic unweighted bipartite matching
problem in adversarial, stochastic and ROM mdoels.

A reasonably up to date survey for bipartite macthing and related
problems is given by Mehta [2011]
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