
CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2017

Allan Borodin

February 6, 2017

1 / 1

Lecture 5

Announcements:

Assignment 1 is due February 13, at the start of clsss.
Please ask for any clarifications that are needed!

I am reserving Thursdays 3-4 for an office hour but I welcome
discussing the course whenever I am free.

Can we arrange a 1 or 2 hour lecture outside of the usual time? I am
here reading week but not the following week.

Todays agenda:

Some recent progress of the makespan problem in the restricted
machines model.

Linear Programming Duality

I Primal dual algorithms
I dual fitting anaylsis
I factor revealing LPs

Begin randomized algorithms if time permits?

2 / 1

The restricted machine makespan problem

The restricted machines model is a special case of the unrelated
machines problem where for every job j , pj ,i ∈ {pj ,∞}. Hence the
LST 2-approximation applies.
LST show that it is NP hard to do better than a 1.5 approximation
for the restricted machines (and hence unrelated machines) problem.
Shmoys shows that for the special case that pj ∈ {1, 2} that the
problem can be solved in polynomial time.
There is a relatively new (somewhat strange) result due to Svensson
[2011]. He shows how to approximate the value of the optimum
makespan to within a factor of 33/17 ≈ 1.9413 < 2. This is proven
constructively by a local search algorithm satisfying the
approximation. However, the local search is not shown to terminate in
polynomial time.
Note that if we could determine the optimal makespan value in
polynomial time, then we can also find an optimal solution in
polynomial time. How? However, the same cannot be said when
we are only have an “approximately optimal value”.

3 / 1

The special case of graph orientation

Consider the special case when there are (at most) two allowable
machines for each job. This is called the graph orientation problem.

It turns out easier to reason about the LP rounding applied to the
graph orientation problem for the given IP/LP but still the integrality
gap is 2.

A more refined IP/LP by Eveblendr, Krcal and Sgall [2008] achieves a
1.75 approximation for the graph orientation problem.

Even for the case when each job can only be scheduled on at most 3
machines, beating the 2-approximation remains an open problem.

4 / 1

Some concluding remarks (for now) about LP
rounding

We will return later to more LP applications. There are some nice
notes by Allan Jepson providing some of the geometric concepts
underlying LP solutions. (Note: these slides are password protected
but I will provide password in class.)
http://www.cs.toronto.edu/ jepson/csc373/index2012.html
There can be, of course, many different IP/LP formulations for a
given problem. In particular, one often adds additional constraints so
that the polytope of the LP solutions is smaller.
For example, in the vertex cover LP, one could simply add constraints
xi + xj + xk ≥ 2 for every triangle in the graph and more generally,
constraints for every odd length cycle. (These inequalities do not
essentially change the integrality gap.)
Adding such constraints corresponds to one round of what is called
the LS lift and project method.
There are a number of lift and project methods. If you are interested,
then consult our local expert Toni Pitassi. 5 / 1

Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:
I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:
I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.

6 / 1

An example: set cover

The vertex cover problem is a special case of the set cover problem in
which the elements are the edges and the vertices are the sets, each set (ie
vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ui∈Sj xj ≥ 1 for all i ; that is, for all ui ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ui∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem. 7 / 1

Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.

8 / 1

Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound. 9 / 1

Motivating duality

Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual solution
(y1, y2) = (2, 1) must be 26.

10 / 1

Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤∑m

j=1(
∑n

i=1 Ajixi)yj
≤∑n

i=1

∑m
j=1(Ajiyj)xi

≤∑n
i=1 cixi = c · x

11 / 1

Max flow-min Cut in terms of duality

While the max flow problem can be naturally formulated as a LP, the
natural formulation for min cut is as an IP. However, for this IP, it
can be shown that the extreme point solutions (i.e. the vertices of the
polyhedron defined by the constraints) are all integral {0,1} in each
coordinate. Moreover, there is a precise sense in which max flow and
min cut can be viewed as dual problems. See Vazarani (section 12.2).
In order to formulate max flow in standard LP form we reformulate
the problem so that all flows (i.e. the LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows)
we add an edge of infinite capacity from the terminal t to the source
s and hence define a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E

12 / 1

Max flow-min cut duality continued

For the primal edge capacity constraints, introduce dual (“distance”)
variables di ,j and for the vertex flow conservation constraints, introduce
dual (“potential”) variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i)}
be an intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1; p∗t = 0.
The IP optimum then defines a cut (S ,T) with S = {i |p∗i = 1} and
T = {i |p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first
constraint forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut. 13 / 1

Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.
Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.
As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥ 1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.
We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.

14 / 1

Primal dual for f -frequency set cover continued

Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i ; C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.

15 / 1

Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .

16 / 1

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual minimization algorithms extend this basic form by
using a second (reverse delete) stage to achieve minimality. Some
primal dual maximization algorithms use a reverse delete to enforce
feasibility. There is some (for me not precise) relation between primal
dual and local ratio alvgorithms (see Bar-Yehuda and Rawitz)

NOTE: In the primal dual method we are not solving any LPs.
Primal dual algorithms are viewed as “combinatorial algorithms” and
in some cases they might even suggest an explicit greedy algorithm.

17 / 1

A primal dual algorithm with reverse delete :
the weighted vertex feedback problem

The vertex feedback problem

Given a graph G = (V ,E), a feedback vertex set (FVS) F is a subset of
vertices whose removal will make the resulting graph acyclic. That is, if
S = V − F , then G [S] = (S ,E [S]) is acyclic where G [S] is the graph
induced by S .

The (weighted) feedback vertex set problem is to compute a
miniumm size (weight) feedback vertex set.
The problem (i.e. in its decision version) was one of Karp’s original
NP complete problems. It has application to circuit design and
constraint satisfaction problems. It is as hard as vertex cover.
An obvious IP for this problem would have the constraints∑

v∈C xv ≥ 1 for every cycle C in the graph. Not only is this possibly
an exponential size IP (which may or may not not be a problem), it is
known that the integrality gap is Θ(log |V |).

18 / 1

An alternative IP/LP for the FVS problem

Chudak et al [1998] provide primal dual interpretations for the
2-approximation algorithms due to Becker and Geiger [1994] and
Bafna, Berman, Fujito [1995]. In the primal dual interpretations, both
algorithms use almost the same IP representation and method for
raising dual variables.

The basic fact underlying the IP representations is the following:

Fact

Let d(v) be the degree of v , b(S) = |E [S]| − |S |+ 1 and τ(S) = the size
of a minimal feedback set for G [S]. Then if F is any FVS, and E [S] 6= ∅
then

1
∑

v∈F [dS(v)− 1] ≥ b(S) for all S ⊆ V and hence

2
∑

v∈F dS(v) ≥ b(S) + τ(S)

19 / 1

Primal dual for FVS continued

The IP/LP and the resulting primal dual algorithm is a little easier to state
for the Berger and Geiger algorithm but the analysis is perhaps a little
simpler for the Bafna et al. algorithm. Here is the formulation for the
Berger and Geiger algorithm:

Primal for Berger and Geiger algorithm

P: minimize
∑

v∈V wvxv
subject to

∑
v∈S dS(v)xv ≥ b(S) + τ(S) for all S ⊆ V with E [S] 6= ∅

IP: xv ∈ {0, 1} LP: xv ≥ 0

The dual

D: maximize
∑

S(b(S) + τ(S))yS
subject to

∑
S :v∈S dS(v)yS ≤ wv for all v ∈ V

yS ≥ 0 for all S ⊆ V with E [S] 6= ∅

Note: These are exponential size LPs but that will not be a problem.

20 / 1

Primal dual for Berger and Geiger

yv = 0 for all v ; ` := 0;F := ∅
V ′ := V ;E ′ := E
While F is not a FVS for (V ′,E ′)
` := `+ 1
recursively remove all isolated vertices and degree 1 vertices and incident

edges from (V ′,E ′)
S := V ′ In the Bafna et al algorithm S is not always set to V ′

Increase yS until ∃v` ∈ S :
∑

T :v`∈T dT (S)vT = wv`

F := F ∪ {v`}
Remove v` from V ′ and all incident edges from E ′

End While
For j = `..1 % This is the reverse delete phase

If F − {vj} is an FVS then F := F − {vj}
End If

End For

21 / 1

Comments on the primal dual for Berger and Geiger
algorithm

The algorithm as originally stated shows how to efficiently find a v` so
as to make the the dual constraint tight; namely let
v` = argminv∈Swv/dS(v`) and let ε = wv`/dS(v`). Then εdS(u) is
subtracted from wu for all u ∈ S .
It is easy to verify that any FVS is a solution to the primal and
conversely any IP solution is an FVS.
It is immediate that the F computed is an (integral) FVS since the
While condition forces this.
The analysis shows that for the dual LP constructs a feasible
fractional {yS} solution satisfying:∑

v∈F wv ≤ 2
∑

S(b(S) + τ(S))− 2
∑

S yS ≤ 2
∑

S(b(S) + τ(S))
Therefore, the primal dual algorithm is a 2-approximation algorithm.
The integrality gap is then at most 2 and this is known to be tight. It
is also interesting to note that the dual objective function cannot be
efficiently evaluated since τ(S) is the optimal FVS value for G [S].

22 / 1

Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm

We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .

23 / 1

The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).

24 / 1

Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei) ≤ wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei)/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.

25 / 1

The Steiner tree and Steiner forest problems

I am briefly presenting the treatment of this topic as in the
“Approximation Algorithms” text by Vijay Vazirani (with slightly different
notation. The development of primal dual algorithms began with paper by
Agarwal, Klein and Ravi [1991] and Goemans and Williamson [1995] which
provided a 2-approximation for the Steiner forest problem.

The Steiner forest problem on input (G , c , {Ri}) is defined as follows: We
are given an edge weighted c : E → R≥0 graph G = (V ,E) and disjoint
subsets R1, . . . ,Rk of V . Let S = V \ (∪iRi). The nodes in ∪iRi are
called required nodes and the remaining nodes are called Steiner nodes.
Without loss of generality, solutions will be forests.

The goal is to select a mininal cost set of edges so that the nodes in each
Ri are connected. When k = 1, this is the Steiner tree problem
The Steiner tree problem has a relatively simple combinatorial
2-approximation algorithm. Agorithms with better approximation ratios
are konwn. I believe the primal dual algorithm for the Steiner forest
problem remains the best (poly time) approximation.

26 / 1

Combinatorial algorithm for Steiner tree

Without loss of generality, we can assume that the edge costs are a metric
by the following metric closure:

The graph G is transformed into a complete graph G ′ whose edge
costs are a metric. Namely, replace each missing edge (u, v) by an
edge with cost c ′ equal to the shortest cost between u and v .

The optimum cost of a Steiner tree for (G , c ′,R) is at least as good
as any solution for (G , c ,R).

Having found the optimal Steiner tree for (G , c ′,R), replace each
edge in E ′ \ E by the corresponding path. This will possibly create
cycles so remove edges to form a tree T .

It sufices now to solve the Steiner tree problem for a metric edge cost c .

27 / 1

The metric Steiner tree problem

We solve the metric Steiner tree problem by computing a minimum cost
spanning tree (MST) covering the nodes in R (and possibly using Steiner
nodes).

Let OPT denote the cost of an optimal Steiner tree for (G , c ,R). The
cost of an MST on R is at most 2 · OPT
The proof follows by making two copies of edge edge which then makes
the graph Eulerian (i.e. can be tranversed using each edge once). Then
short cut the Steiner nodes and any previously traversed nodes to produce
a Hamitonian cycle. These short cuts do not increase the cost for the
Eulerian graph. The edge copies cause at most a factor of 2 in cost .

The bound for this algorithm is tight in that there is a class of graphs
{Gn} where Gn has n required nodes and one Steiner node. The MST for
this graph has cost 2n − 1 whereas the OPT cost is n.

28 / 1

The primal dual Steiner forest algorithm

Let f (S) = 1 if u ∈ S , v /∈ S for some u, v in the same required set Ri and
0 otherwise. Also let δ(S) denote the edges crossing the cut (S , S̄). Then
an IP formulation for the Steiner forest problem is as follows::

minimize
∑

e∈E cexe
subject to

∑
e:e∈δ(S) xe ≥ f (S) S ⊆ V ,

xe ∈ {0, 1} e ∈ E .

In the LP relaxation, xe ≥ 0 (dropping the unnecessary xe ≤ 1)

The dual is :
maximize

∑
S⊆V f (S)yS

subject to
∑

S :e∈δ(S) yS ≤ ce e ∈ E ,
yS ≥ 0 S ⊆ V

29 / 1

The Steiner forest primal dual

A set S is unsatisfied if f (S) = 1 but so far no chosen edge crossing the
cut (S , S̄) and a set is called active if it is a minimal (wrt. set inclusion)
unsatisfied set. The current primal indicates which sets are unsatisfied and
therefore which dual yS variables have to be raised. This in turn will
determine which edge will be chosen (i.e. when a dual constraint becomes
tight).

22.2 Primal–dual schema with synchronization 201

By the characterization of active sets given in Lemma 22.2, it is easy to
find all active sets in the current iteration. The dual variables of these sets
are raised in a synchronized manner, until some edge goes tight. Any one of
the newly tight edges is picked, and the current iteration terminates.

When a primal feasible solution is found, say F , the edge augmentation
step terminates. However, F may contain redundant edges, which need to be
pruned for achieving the desired approximation factor; this is illustrated in
Example 22.4. Formally, edge e ∈ F is said to be redundant if F −{e} is also
a feasible solution. All redundant edges can be dropped simultaneously from
F . Equivalently, only nonredundant edges are retained.

This algorithm is presented below. We leave its efficient implementation
as an exercise.

Algorithm 22.3 (Steiner forest)

1. (Initialization) F ← ∅; for each S ⊆ V , yS ← 0.
2. (Edge augmentation) while there exists an unsatisfied set do:

simultaneously raise yS for each active set S, until some edge e goes
tight;

F ← F ∪ {e}.
3. (Pruning) return F ′ = {e ∈ F | F − {e} is primal infeasible}

Example 22.4 Consider a star in which all edges have cost 1, except one
edge whose cost is 3.

! ✉
! !

!!
✉❚

❚
❚
❚
❚
❚

✔
✔

✔
✔

✔
✔

3

1

1
1

1
1

The only requirement is to connect the end vertices of the edge of cost 3. The
algorithm will add to F all edges of cost 1 before adding the edge of cost 3.
Clearly, at this point, F is not within twice the optimal. However, this will
be corrected in the pruning step when all edges of cost 1 will be removed. ✷

Let us run the algorithm on a nontrivial example to illustrate its finer
points.

Example 22.5 Consider the following graph. Costs of edges are marked, and
the only nonzero connectivity requirements are r(u, v) = 1 and r(s, t) = 1.
The thick edges indicate an optimal solution of cost 45.

[From Vazirani text, Chapter 22]
30 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (in the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

31 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (in the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

31 / 1

The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be derandomized, there is often
conceptual insight to be gained from the initial randomized algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms is that the probability
of success can be amplified by repreated independent trials of the
algorithm.

32 / 1

Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

33 / 1

Polynomial identity testing

The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.
Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact
that a univariate polynomial of degree d can have at most d zeros. 34 / 1

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm the
determinant can be computed in O(n2.38) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

35 / 1

