
CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2017

Allan Borodin

January 30, 2017

1 / 32

Lecture 4

Announcements:

I have posted all 7 questions for assignment 1. It is due February 13,
at the start of clsss.
When necessary, I will elaborate (and sometimes give hints) for
questions during class. So please do ask for any clarifications that are
needed!

I am reserving Thursdays 3-4 for an office hour but I welcome
discussing the course whnever I am free. However, I am away this
week but on email.

Can we arrange a 1 or 2 hour lecture outside of the usual time. I am
here reading week but not the following week.

Todays agenda:

Continue Ford Fulkerson and applications of max flow

Begin Linear Programming (LP)
I IP/LP rounding
I LP Duality; primal dual algorithms and analysis

2 / 32

Ford Fulkerson max flow based algorithms

A number of problems can be reduced to the max flow problem. As
suggested, max flow itself can be viewed as a local search algorithm.

Flow Networks

A flow network F = (G , s, t, c) consists of a “bi-directional” graph
G = (V ,E) , a source s and termnal node t, and c is a non-negative real
valued (capacity) function on the edges.

What is a flow

A flow f is a real valued function on the edges satisfying the following
properties:

1 f (e) ≤ c(e) for all edges e (capacity constraint)

2 f (u, v) = −f (v , u) (skew symmetry)

3 For all nodes u (except for s and t), the sum of flows into (or out of)
u is zero. (Flow conservation).
Note: this is the “flow in = flow out” constraint for the convention of
only having non negative flows. 3 / 32

The max flow problem

The goal of the max flow problem is to find a valid flow that
maximizes the flow out of the source node s. This is also clearly
equivalent to maximizing the flow in to the terminal node t since flow
conservation dictates that no flow is being stored in the other nodes.
We let
val(f) = |f | denote the flow out of the source s for a given flow f .

We will consider the Ford Fulkerson augmenting path scheme for
computing an optimal flow. I am calling it a scheme as there are
many ways to instantiate this scheme although I dont view it as a
general paradigm in the way I view (say) greedy and DP algorithms.

I am assuming that many people in the class have seen the Ford
Fulkerson algorithm so I will discuss this quickly. I am following the
development of the model and algorithm as in Cormen et al (CLRS).
That is, we have negative flows which simplifies the analysis but may
be less intuitive.

4 / 32

A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we can define
the residual graph Gf = (V ,E (f)) where E (f) is the set if all edges e
having positive residual capacity ; i.e. the residual capacity of e wrt
to f is cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.
Also note that with our convention of negative flows, even a zero
capacity edge (in G) can have residual capacity.

The basic concept underlying Ford Fulkerson is that of an
augmenting path which is an s − t path in Gf . Such a path can be
used to augment the current flow f to derive a better flow f ′.

Given an augmenting path π in Gf , we define its residual capacity wrt
f as cf (π) = min{cf (e)|e in the path π}.

5 / 32

The Ford Fulkerson scheme

Ford Fulkerson

f := 0 ;
Gf := G %initialize
While there is an augmenting path in Gf

Choose an augmenting path π
f̃ := f + fpi ; f := f̃ % Note this also changes Gf

End While

I call this a scheme rather than a well specified algorithm since we have
not said how one chooses an augmenting path (as there can be many such
paths)

6 / 32

The max flow-min cut theorem

Ford Fulkerson Max Flow-Min Cut Theorem

The following are equivalent:

1 f is a max flow

2 There are no augmenting paths wrt flow f ; that is, no s− t path in Gf

3 val(f) = c(S ,T) for some cut (S ,T) ; hence this cut (S ,T) must be
a min (capacity) cut since val(f) ≤ c(S ,T) for all cuts.

Hence “max flow = min cut”

7 / 32

Comments on max flow - min cut theorem

As previously mentioned, Ford Fulkerson algorithms can be viewed as
local search algorithms. Also, the neighbouhood is in general of
exponential size but it can be efficiently search to find a local
improvement or determine that none exists. .

This is a rather unusual local search algorithm in that any local
optimum is a global optimum.

Suppose we have a flow network in which all capacities are integral.
Then :

1 Any Ford Fulkerson implementation must terminate.
2 If the sum of the capacities for edges leaving the source s is C , then

the algorithm terminates in at most C iterations and hence with
complexity at most O(mC).

3 Ford Fulkerson implies that there is an optimal integral flow. (There
can be other non integral optimal flows.)

It follows that if all capacities are rational, then there is an optimal
rational valued flow and the algorithm must terminate. Why?

8 / 32

Good and bad ways to implement Ford Fulkerson

There are bad ways to implement the networks such that

1 There are networks with non rational capacities where the algorithm
does not terminate.

2 There are networks with integer capacities where the algorithm uses
exponential (in representation of the capacities) time to terminate.

There are various ways to implement Ford-Fulkerson so as to achieve
polynomial time. Edmonds and Karp provided the first polynomial
time algorithm by showing that a shortest length augmenting path
yields the time bound O(|V | · |E |2). For me, the conceptually
simplest polynomial time analysis is the Dinitz algorithm which has
time complexity O(|V |2|E |) and also has the advantage of leading to
the best known time bound for unweighted bipartite matching. I
think the best known worst case time for max flow is the
preflow-push-relabel algorithm of Goldberg and Tarjan with time
O(|V | · |E | polylog(|E |) or maybe O(|V | · |E |).

9 / 32

The Dinitz (sometimes written Dinic) algorithm

Given a flow f , define the leveled graph Lf = (V ′,E ′) where
V ′ = {v |v reachable from s in Gf } and (u, v) ∈ E ′ iff
level(v) = level(u) + 1. Here level(u) = length of shortest path from
s to u.

A blocking flow f̃ is a flow such that every s to t path in Lf has a
saturated edge.

The Dinitz Algorithm

Initialize f (e) = 0 for all edges e
While t is reachable from s in Gf (else no augmenting path)

Construct Lf corresponding to Gf

Find a blocking flow f̂ wrt Lf and set f := f + f̂
End While

10 / 32

The run time of Dinitz’ algorithm

Let m = |E | and n = |V |
The algorithm halts in at most n − 1 iterations (i.e. blocking steps).

The residual graph and the levelled graph can be computed in time
O(m) with breadth first search and using depth first search we can
compute a blocking path in time O(mn). Hence the total time for the
Dinitz blocking flow algorithm is O(mn2)

A unit network is one in which all capaities are in {0,1} and for each
node v 6= s, t, either v has at most one incoming edge (i.e. of
capacity 1) or at most one outgoing edge. In a unit network, the
Dinitz algorithm terminates within 2

√
n iterations and hence on such

a network, a max flow can be computed in time O(m
√
n) (Hopcroft

and Karp [1973].

11 / 32

Application to unweighted bipartite matching

We can transform the maximum bipartite matching problem to a max
flow problem.
Namely, given a bipartite graph G = (V ,E), with V = X ∪ Y , we
create the flow network FG = (G ′, s, t, c) where

I G ′ = (V ′,E ′) with V ′ = V ∪ {s, t} for nodes s, t /∈ V
I E ′ = E ∪ {(s, x)|x ∈ X} ∪ {(y , t)|y ∈ Y }
I c(e) = 1 for all e ∈ E ′.

.

Claim: Every matching M in G gives rise to an integral flow fM in FG

with val(fM) = |M|; conversely every integral flow f in FG gives rise to a
matching Mf in G with |M| = val(f).

Hence a maximum size bipartite matching can be computed in time
O(m

√
n) using the Hopcroft and Karp adatpion of the blocking path

algorithm.
Similar ideas allow us to compute the maximum number of edge (or
node) disjoint paths in directed and undirected graphs.

12 / 32

Additional comments on maximum bipartite
matching

There is a nice terminology for augmenting paths in the context of
matching. Let M be a matching in a graph G = (V ,E). A vertex v is
matched if it is the end point of some edge in M and otherwise if is
free. A path π is an alternating path if the edges in π alternate
between M and E −M.

Abusing terminology briefly, an augmenting path (relative to a
matching M) is an alternating path that starts and ends in a free
vertex. An augmenting path in a graph shows that the matching is
not a maximum and can be immediately improved.

Clearly the existence of an augmenting path in a bipartite graph G
corresponds to an augmenting path in the flow graph FG used to
show that bipartite matching reduce to flows.

13 / 32

The weighted bipartite matching problem

Can the flow algorithm for unweighted bipartite matching be modified
for weighted bipartite matching?

The obvious modification would set the capacity of < x , y >∈ E to
be its weight w(x , y) and the capacity of any edge < s, x > could be
set to maxy{w(x , y)} and similarly for the weight of edges < y , t >.

Why doesnt this work?

It is true that if G has a matching of total weight W then the
resulting flow network has a flow of value W .

But the converse fails! Why?

We will return to the weighted biparitite matching problem (also
known as the assignment problem) discussing both the optimal
“Hungarian method formalize by Kuhn [1955] and attributed by Kuhn
to Konig and Egevary [1931].

We will see that this method is intimately tied to linear programming
duality.

We will also discuss the online matching problem and variants.

14 / 32

The metric labelling problem

We consider a problem well motivated by applications in, for example,
information retrieval. (See Kleinberg and Tardos text)

The metric labelling problem

Given: graph G = (V ,E), a set of labels L = {a1, . . . , ar} in a metric
space M with distance δ, and a cost function κ : V × L→ <≥0. The goal
is to construct an assignment α of labels to the nodes V so as to minimize∑

i∈V κ(i , α(i)) +
∑

(i ,j)∈E pi ,j · δ(α(i), α(j))

The idea is that κ represents a cost for labelling the node (e.g. a penalty
for a bad classification of a web page), p represents the importance of that
edge (e.g. where in a web page a particular link occurs) and δ represents
the (basic or unweighted) cost of giving different labels to nodes that are
related (e.g. the penalty for different labellings of web pages that are
linking to each other or otherwise seem to be discussing similar topics).

15 / 32

The binary label case

A case of special interest and the easiest to deal with is when the
metric is the binary {0, 1} metric; that is, δ(a, b) = 1 if a 6= b and 0
otherwise. (When there are only two labels, the binary {0, 1} metric
is the only metric.)

The case of two labels suggests that the problem might be formulated
as a min cut problem. Indeed this can be done to achieve an optimal
algorithm when there are only two labels.

For more than two labels, the binary metric case becomes NP hard
but a there is a 2-approximation via a local search algorithm that uses
min cuts to search a local neighbourhood.

16 / 32

The case of two labels

The problem for two labels can be restated as follows: find a partition
V = A ∪ B of the nodes so as to minimize∑

i∈A bi +
∑

j∈B aj +
∑

(i ,j)∈A×B pi ,j

We transform this problem to a min cut problem as follows: construct
the flow network F = (G ′, s, t, c) such that

I G ′ = (V ′,E ′)
I V ′ = V ∪ {s, t}
I E ′ = {(u, v)|u 6= v ∈ V } ∪ {(s, u)|u ∈ V } ∪ {(u, t)|u ∈ V }
I c(i , j) = c(j , i) = pi,j ; c(s, i) = ai ; c(i , t) = bi

Claim:

For any partition V = A ∪ B, the capacity of the cut
c(A,B) =

∑
i∈A bi +

∑
j∈B aj +

∑
(i ,j)∈A×B pi ,j .

17 / 32

Flow networks with costs

We now augment the definition of a flow network F = (G , s, t, c , κ) where
κ(e) is the non negative cost of edge e. Given a flow f , the cost of a path
or cycle π is

∑
e∈π κ(e)f (e).

MIn cost flow problem

Given a network F with costs, and given flow f in F , the goal is to find a
flow f of minimum cost. Often we are only interested in a max flow of min
cost.

Given a flow f , we can extend the definition of an augmenting path in
F to an augmenting cycle which is just a simple cycle (not necessarily
including the source) in the residual graph Gf .

If there is a negative cost augmenting cycle, then the flow can be
increased on each edge of this cycle which will not change the flow
(by flow conservation) but will reduce the cost of the flow.

A negative cost cycle in a directed graph can be detected by the
Bellman Ford DP for the single source shortest path problem.

18 / 32

An application of a min cost max flow

We return to the weighted interval scheduling problem (WISP) .

We can optimally solve the m machine WISP using DP but the time
for this algorithm is O(nm).

Using the local ratio (i.e. priority stack) algorithm we can
approximate the optimal within a factor of 2− 1

m .

Arkin and Silverberg [1987] show that the m machine WISP can be
reduced efficiently to a min cost problem resulting in an algorithm
having time complexity O(n2 log n).

The Arkin and Silverberg reduction is (for me) a subtle reduction
which I will sketch.

19 / 32

The Arkin-Silverberg reduction of WISP to a min
cost flow problem

The reduction relies on the role of maximal cliques in the interval
graph.
An alternative characterization of an interval graph is that each job
(i.e. interval) is contained in consecutive maximal cliques.
The goal will be the crreate a flow graph so that a min cost flow
(with value = maximum size clique - m) will correspond to a
minimum weight set of intervals whose removal will leave a feasible
set of intervals (i.e. can be scheduled on the m machines).
If q1, . . . , qr are the maximal cliques then the (directed) flow graph
will have nodes v0, . . . , vr and three types of edges:

1 (qi , qi−1) representing the clique qi with cost 0 and infinite capacity
2 If an interval Ji occurs in cliques qj , . . . , qj+`, there is an edge

(vj−1, vj+`) with cost wi and capacity 1.
3 For each clique qi not having maximum size, we have an edge (vi−1, vi)

of cost 0 and capacity maximum clique size - size of qi . (These can be
thought of as “dummy intervals”.)

20 / 32

Example of interval graph transformation
4 E.M. Arkin, E.B. SHverberg

q l q2 q3

Fig. la. The jobs.

to (required-flow x complexity-of-shortest-path-algorithm). In our case, the re-
quired flow is O(n). Edmonds and Karp have shown that it can be arranged for the
shortest path computation to be carried out over nonnegative arc lengths [2]. Thus
Dijkstra's shortest path algorithm can be applied [1]. For a graph with IEI edges
and t VI nodes, the complexity of Dijkstra's algorithm is O(IEI + I VI log I VI) [4].
In our problem, both [VI and IEI are O(n); therefore, the overall complexity of our
algorithm is 0(/7 2 log n), concluding the proof of the theorem. []

Notice that in solving this problem for some k, we actually have solved the pro-
blem for any given number of machines greater than or equal to k. This can be seen
by examining a min-cost flow algorithm which builds up flows (see [11]). At each
step, an increase of the flow through the graph can be interpreted as a decrease in
the number of available machines. Thus, the O(n 2 log n) algorithm solves the pro-
blem for all possible k in one execution.

S = v 0

V 1

V 2

W

C

T = v 3

Fig. lb. The directed graph.
Note: The dotted arc represents a dummy job.

4 E.M. Arkin, E.B. SHverberg

q l q2 q3

Fig. la. The jobs.

to (required-flow x complexity-of-shortest-path-algorithm). In our case, the re-
quired flow is O(n). Edmonds and Karp have shown that it can be arranged for the
shortest path computation to be carried out over nonnegative arc lengths [2]. Thus
Dijkstra's shortest path algorithm can be applied [1]. For a graph with IEI edges
and t VI nodes, the complexity of Dijkstra's algorithm is O(IEI + I VI log I VI) [4].
In our problem, both [VI and IEI are O(n); therefore, the overall complexity of our
algorithm is 0(/7 2 log n), concluding the proof of the theorem. []

Notice that in solving this problem for some k, we actually have solved the pro-
blem for any given number of machines greater than or equal to k. This can be seen
by examining a min-cost flow algorithm which builds up flows (see [11]). At each
step, an increase of the flow through the graph can be interpreted as a decrease in
the number of available machines. Thus, the O(n 2 log n) algorithm solves the pro-
blem for all possible k in one execution.

S = v 0

V 1

V 2

W

C

T = v 3

Fig. lb. The directed graph.
Note: The dotted arc represents a dummy job. 21 / 32

Integer Programming (IP) and Linear Programming
(LP)

We now introduce what is both theoretically and in practice one of
the most general frameworks for solving search and optimization
problems. Namely, we consider how many problems can be
formulated as integer programs (IP). (Later, we will also consider
other mathematical programming formulations.)
Solving an IP is in general an NP hard problem although there are
various IP problems that can be solved optimally. Moreover, in
practice, many large instances of IP do get solved.
Our initial emphasis will be on linear program (LP) relaxations of IPs.
LPs can be solved optimally in polynomial time as first shown by
Khachiyan’s ellipsoid method [1979] and then Karmarkar’s‘ [1984]
more practical interior point method. In some (many?) cases,
Danzig’s [1947] simplex method will outperform (in terms of time)
the worst case polynomial time methods.
Smoothed analysis gives an explanation for the success of simplex.
Open: a strongly polynomial time algorithm for solving LPs? 22 / 32

Some IP and LP concepts

Integer Programs

An IP has the following form:

Maximize (minimize)
∑

j cjxj

subject to (
∑

j aijxj)Ribi for i = 1, . . . ,m
and where Ri can be =,≥,≤
xj is an integer (or in some prescribed set of integers) for all j

Here we often assume that all parameters {aij , cj , bi} are integers or
rationals but in general they can be real valued.

An LP has the same form except now the last condition is realized by
letting the xj be real valued. It can be shown that if an LP has only
rational parameters then we can assume that the {xj} will be rational.

23 / 32

Canonical LP forms

Without loss of generality, LPs can be formulated as follows:

Standard Form for an LP

Maximize c · x Minimize c · x
subject to A · x ≤ b A · x ≥ b

x ≥ 0 x ≥ 0

Slack form

maximize/minimize c · x
subject to A · x + s = b

x ≥ 0; s ≥ 0

The {sj} variables are called slack variables.

24 / 32

LP relaxation and rounding

One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational suffice) variables.

We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E) with a weight
function w : V → <≥0. To simplify notation let the vertices be
{1, 2,n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj ≥ 1 for every edge (i , j) ∈ E
I xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex j is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.

Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.

25 / 32

LP rounding for the natural weighted vertex cover IP

The “natural LP relaxation” then is to replace xj ∈ {0, 1} by
xj ∈ [0, 1] or more simply xj ≥ 0 for all j .

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an IP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x∗ and create an integral solution x̄ as
follows: x̄j = 1 iff x∗j ≥ 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover).
2

∑
j wj x̄j ≤ 2 ·

∑
j wjx

∗
j ≤ 2 · IP-OPT ; that is, the LP relaxation results

in a 2-approximation.

26 / 32

The integrality gap

Analogous to the locality gap (that we encountered in local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP−OPT
LP−OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .

27 / 32

Integrality gaps and approximation ratios

When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative bound (say c ′) on the integrality gap
then this is only a result about the given IP/LP. In practice we tend
to see an integrality gap as strong evidence that this particular
formulation will not result in a better than c ′ approximation. Indeed I
know of no natural example where we have a lower bound on an
integrality gap and yet nevertheless the IP/LP formulation leads
“directly” into a better approximation ratio.
In theory some conditions are needed to have a provable statement.
For the VC example, the rounding was “oblivious” (to the input
graph). In contrast to the Kn input, the LP-OPT and IP-OPT
coincide for an even length cycle. Hence this integrality gap is a tight
bound on the formulation using an oblivious rounding.

28 / 32

Makespan for the unrelated and restricted machine
models: a more sophisticated rounding

In the VC example I use the terms “(input) independent rounding” and
“oblivious” rounding.)

We now return to the makespan problem with respect to the unrelated
machines model and the special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.

29 / 32

The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.

30 / 32

Adapting the natural IP

As in the PTAS for the identical machine makespan PTAS, we use
binary search to find an appropriate approximation T for the optimal
makespan.

Given a candidate T , we remove all xji such that pj ,i > T and obtain
a “search problem” (i.e. constant or no objective function) for finding
xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, the LST
algorithm then shows how to use a non-independent rounding to
obtain an integral solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an intergral solution.

31 / 32

Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible bounded LP with m + n constraints (not counting the
non-negativity constraints for the variables) then L has an optimal
basic solution such that at most n + m of the variables are non-zero.

It follows how? that there are at most m of the n jobs that have
fractional solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.

32 / 32

The rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a matching
of size y . Note, of course, this is what makes the “rounding”
non-independent .

The existence of this matching requires more LP theory whereby it
can be shown (LST credit Dantzig [1963]) that the connected
components of the bipartite graph are either trees or trees with one
added edge (and therefore causing a unique cycle).

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed a makespan at
most T before assigning the fractional jobs.

33 / 32

	Lecture 4

