CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2017

Allan Borodin

January 23, 2017

/40

Lecture 3

Announcements:

@ | have posted the first 6 questions for assignment 1. When necessary,
| will elaborate (and sometimes give hints) for questions during class.
So please do ask for any clarifications that are needed!

@ | am reserving Thursdays 3-4 for an office hour but | welcome
discussing the course whnever | am free.

Todays agenda:

Continue whirlwind discussion of basic combinatorial algorithms

°
@ Dynamic programming
@ Local search

°

Ford Fulkerson Max flow and max flow based based algorithms if time
permits.

N

40

A pseudo polynomial time “natural DP” for
knapsack

Consider an instance of the (NP-hard) knapsack problem; that is we are
given item {(vk, sk)|1 < k < n} and a knapsack capacity C. Following
along the lines of the WISP DP, the following is a reasonably natural
approach to obtain a “pseudo polynomal space and time" DP:

@ For1 <ji<nand0<c<C, define V[i,c] to be the value of an
optimum solution using items Z; C {/, ..., [;} and satisfying the size
constraint that ZIJGI,- si<c.

@ A corresponding recursive DP is as follows:

@ V[0,c] =0 forall c
@ For i >0, V[i] = max{A, B} where
* A=V[i—1,(]
* B=vi+ V[c—5j]ifsi<cand V[i — 1, c] otherwise.
Note: easy to make mistakes so again have to verify that this recursive
definition is correct.
@ The space and time complexity is O(nC) which is pseudo polynomial

in the sense that C can be exponential in the encoding of the input.
3/40

An FPTAS for the knapsack problem

Let the input items be /i, ..., I, (in any order) with /x = (v, sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in the numeric value
v (rather than the encoded length |v|) of the input values.

Define S[j, v] = the minimum size s needed to achieve a profit of at least
v using only inputs /1,. .. [;; this is defined to oo if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we give in the form of an array) such
that

© the desired result can be easily obtained from this array

© each entry of the array can be easily computed given “previous
entries”

How to compute the array S|/, v] and why is this
sufficient

@ The value of an optimal solution is max{v|S[n, v] is finite}.
@ We have the following equivalent recursive definition that shows how
to compute the entries of S[j,v] for 0 <j <nand v <>’7 v
» Basis: S[0,v] = oo for all v
» Induction: S[j, v] = min{A, B} where A= S[j — 1, v] and
B = S[j — 1,max{v — v;,0}] + s;.
© It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.
@ For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.
The running time is O(n, V) where V =37, v;.
Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])
is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility..o

©0

The better PTAS for makespan

@ We can think of m as being a parameter of the input instance and

now we want an algorithm whose run time is poly in m, n for any
fixed e = 1/s.
1

@ The algorithm'’s run time is exponential in .

@ We will need a combinaton of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.

6 /40

The high level idea of the makespan PTAS

@ Let T be a candidate for an achievable makespan value. Depending
on T and the € required, we will scale down “large” (i.e. if
pi > T/s= T -¢) to the largest multiple of T/s? so that there are
only d = s? values for scaled values of the large jobs.

@ When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n??) if there is a soluton that achieves
makespan T.

o If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

@ We use binary search to find a good T.

The optimal DP for makespan on identical machines
when there is a fixed number of job values

o Let z1,...,z4 be the d different job sizes and let n = n; be the
total number of jobs with n; being the number of jobs of szie z;.

@ The array we will use to obtain the desired optimal makespan is as
follows:
M[x1,...,x4] = the minimum number of machines needed to
schedule x; jobs having size z; within makespan T. (Here we can
assume T > maxp; > maxz; so that this minimum is finite.)

@ The n jobs can be scheduled within makespan T iff M[ny,, n4] is at
most m.

The optimal DP for a fixed number of job values

o Let z1,...,z4 be the d different job sizes and let n =Y n; be the
total number of jobs with n; being the number of jobs of size z;.

@ M[xi,...,xq] = the minimum number of machines needed to
schedule x; jobs having size z; within makespan T.

@ The n jobs can be scheduled within makespan T iff M[ny,, n4] is at
most m.

40

Computing M[xy, ..., x4]

@ Clearly MJ[0,...,0] = 0 for the base case.
o Let V = {(v1,,vq)|>;vizi < T} be the set of configurations that

can complete on one machine within makespan T; that is, scheduling
v; jobs with size z; on one machine does not exceed the target

makespan T.
@ Mxq,...,xq] =1+ MiN(y, . vy)eVivi<x Mx1 — v, ..., xqg — V4]

@ There are at most n9 array elements and each entry uses
approximately n? time to compute (given previous entries) so that the
total time is O(n?9).

@ Must any (say DP) algorithm be exponential in d?

10/40

Large jobs and scaling (not worrying about any
integrality issues)

Ajobislargeif p; > T/s=T -¢

Scale down large jobs to have size p; = largest multiple of T/(s?)
pi — pi < T/(s%)

There are at most d = s2 job sizes p

There can be at most s large jobs on any machine not exceeding
target makespan T.

11/40

Taking care of the small jobs and accounting for the
scaling down

@ We now wish to add in the small jobs with sizes less than T /s. We
continue to try to add small jobs as long as some machine does not
exceed the target makespan T. If this is not possible, then makespan
T is not possible.

@ If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T /(s?) so this only increases the makespan to (14 1/s)T.

12 /40

Local Search: the other conceptually simplest
approach

We now begin a discussion of the other (than greedy) conceptually
simplest search/optimization algorithm, namely local search.

The vanilla local search paradigm

“Initialize” S

While there is a “better” solution S’ in “Nbhd(S)”
S.=9

End While

If and when the algorithm terminates, the algorithm has computed a focal
optimum. To make this a precise algorithmic model, we have to say:
© How are we allowed to choose an initial solution?
@ What consititutes a reasonable definition of a local neighbourhood
Nbhd(S)?
© What do we mean by “better”?

Answering these questions (especially as to defining a local
neichbourhood) will often be quite problem specific. 13 /40

Towards a precise definition for local search

@ We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.

Of course, in practice we can use any efficiently computed solution.

@ We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

© In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S'|du(S5,S’) < k} for some “small” k where dy(S,S’) is
the Hamming distance.

@ More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|¥.

© We can view Ford Fulkerson flow algorithms (to be discussed) as local
search algorithms where the (possibly exponential size but efficiently
searchable) neighbourhood of a flow solution S are flows obtained by

adding an augmenting path flow.
14 /40

What does “better” solution mean? Oblivious and
non-oblivious local search

@ For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

@ For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons | cannot
understand, this has been termed oblivious local search. | think it
should be called greedy local search.

@ For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

@ In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

@ For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.

15 /40

The weighted max cut problem

@ Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

Given a (undirrected) graph G = (V/, E) and in the weighted case the edges
have non negative weights.

Goal: Find a partition (A, B) of V so as to maximize the size (or weight) of
the cut £/ = {(u,v)lu e A,v € B,(u,v) € E}.

@ We can think of the partition as a characteristic vector x in {0,1}"
where n = |V/|. Namely, say x; = 1 iff v; € A.

o Let Ny(A, B) = {(A’, B")| the characteristic vector of (A’) is
Hamming distance at most d from (A)}

@ So what is a natural local search algorithm for (weighted) max cut?

16 /40

A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

Initialize (A, B) arbitrarily

WHILE there is a better partition (A’, B") € Ni(A, B)
(A, B) := (A, B)

END WHILE

@ This single move local search algorithm is a % approximation; that is,
when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.

@ In fact, if W is the sum of all edge weights, then w(A, B) > %W.

@ This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.

@ The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.

@ It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the

approximation ratio is at least as good as the locality gap.
17 /40

Proof of totality gap for the max cut single move
local search

@ The proof is based on the following property of any local optimum:

Z w(u,v) < Z w(u, v) for every u € A

vEA veB

Summing over all u € A, we have:

2 Z w(u,v) < Z w(u,v) = w(A,B)

u,veA ueA,veB

Repeating the argument for B we have:

2 Z w(u,v) < Z w(u,v) = w(A, B)

u,veB ueA,veB

Adding these two inequalites and dividing by 2, we get:
> w(u,v)+ > w(u,v) < w(A B)
u,veA u,veB
Adding w(A, B) to both sides we get the desired W < 2w(A, B).

18 /40

The complexity of the single move local search

@ Claim: The local search algorithm terminates on every input instance.
» Why?

19 /40

The complexity of the single move local search

@ Claim: The local search algorithm terminates on every input instance.
> Why?

@ Although it terminates, the algorithm could run for exponentially
many steps.

@ It seems to be an open problem if one can find a local optimum
in polynomial time.

@ However, we can achieve a ratio as close to the state % totality ratio
by only continuing when we find a solution (A’, B’) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A,B") > (1 + ¢)w(A, B) for any € > 0

@ This results in a totality ratio ﬁ with the number of iterations
bounded by 7 log W.

19 /40

Final comment on this local search algorithm

@ It is not hard to find an instance where the single move local

search approximation ratio is %

@ Furthermore, for any constant d, using the local Hamming
neighbourhood Ny (A, B)
still results in an approximation ratio that is essentially %
And this remains the case even for d = o(n).

@ It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

@ There is a vector program relaxation of a quadratic program that
leads to a .878 approximation ratio.

20 /40

Exact Max-k-Sat

@ Given: An exact k-CNF formula
F=GNGAN...NCpy,

where C; = (¢} v ¢2...v (¥) and EJ,: € {xk,xx |1 < k <n} .
In the weighted version, each C; has a weight w;.

@ Goal: Find a truth assignment 7 so as to maximize

W(r) = w(F |7),

the weighted sum of satisfied clauses w.r.t the truth assignment 7.

o It is NP hard to achieve an approximation better than % for (exact)
Max-3-Sat and hence for the non exact versions of Max-k-Sat for
k > 3.

21 /40

The natural oblivious local search

@ A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:

Ng(7) ={7":7 and 7’ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment 7
WHILE there exists 7 € Ny(7) such that W(7)> W(7)
T="7

END WHILE

22 /40

How good is this algorithm?

@ Note: Following the standard convention for Max-Sat, | am using
approximation ratios < 1.

@ It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is %

@ In fact, for every exact 2-Sat formula, the algorithm finds an
assignment 7 such that W(7) > 25°7, w;, the weight of all clauses,
and we say that the “totality ratio” is at least %

@ (More generally for Exact Max-k-Sat the ratio is kLH) This ratio is
essentially a tight ratio for any d = o(n).

@ This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2% — 1)/2k.

@ “In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with (for example) a
greedy algorithm and then apply local search. 2s a0

Analysis of the oblivious local search for Exact
Max-2-Sat

@ Let 7 be a local optimum and let

» Sp be those clauses that are not satisfied by
» S; be those clauses that are satisfied by exactly one literal by 7
» S, be those clauses that are satisfied by two literals by 7

Let W(S;) be the corresponding weight.

@ We will say that a clause involves a variable x; if either
xjor X; occurs in the clause. Then for each j, let
» A; be those clauses in Sy involving the variable x;.
» B, be those clauses C in S; involving the variable x;
such that it is the literal x; or X; that is satisfied in C
by 7.
» C; be those clauses in S, involving the variable x;.

Let W(A;j), W(B;), W(C;) be the corresponding weights.

24 /40

Analysis of the oblivious local search (continued)

@ Summing over all variables x;, we get

> 2W(S) = > ; W(A;)) noting that each clause in Sp gets counted twice.
> W(5) =23 W(B)

@ Given that 7 is a local optimum, for every j, we have

W(Aj) < W(B))
or else flipping the truth value of x; would
improve the weight of the clauses being satisfied.
@ Hence (by summing over all j),

2Wh < WA

25 /40

Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W(Ss) W) W(S)
W(So) + W(S1) + W(S2) — 3W(So) + W(S2) — 3W(So)

It is not easy to verify but there are examples showing that this %
bound is essentially tight for any Ny neighbourhood for d = o(n).

It is also claimed that the bound is at best % whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.

26

40

Using the proof to improve the algorithm

@ We can learn something from this proof to improve the performance.

@ Note that we are not using anything about W(5>).

o If we could guarantee that W(Sp) was at most W(S,) then the ratio
of clause weights not satisfied to all clause weights would be % .

@ Claim: We can do this by enlarging the neighbourhood to include
7/ = the complement of 7.

27 /40

The non-oblivious local search

@ We consider the idea that satisfied clauses in S> are more valuable
than satisfied clauses in S; (because they are able to withstand any
single variable change).

@ The idea then is to weight S, clauses more heavily.

@ Specifically, in each iteration we attempt to find a 7/ € Ny(7) that

improves the potential function
3
5 W(51) +2W(S,)

instead of the oblivious W(S51) + W(S).

@ More generally, for all k, there is a setting of scaling coefficients
Cl, ..., Ck, such that the non-oblivious local search using the
potential function c; W(S51) + caW(S2 + ... + ck W(Sk) results

k
2211 for exact Max-k-Sat.

in approximation ratio

28 /40

Sketch of % totality bound for the non oblivious local

search for Exact Max-2-Sat
@ Let P;; be the weight of all clauses in S; containing x;.
@ Let IV;; be the weight of all clauses in S; containing X;.

@ Here is the key observation for a local optimum 7 wrt the stated
potential:

3

1 1 3
—§P2J—§P17J+EN1J+§NQJ <0

@ Summing over variables P; = Ny = W(5;), P, = 2W(S,) and
No = 2W(Sp) and using the above inequality we obtain

3W(50) < W(Sl) + W(Sz)

29 /40

Some comparative experimental results for local
search based Max-Sat algorithms

—%—0LS
0.025 -x-NOLS
-=-TS
-B-NOLS+TS
0.02 -6-SA
-©-MWS
o X % x- - = K= x x *
T 0.015
Y
]
(2]
C
> o001
:W_a——ﬂ—ki]
Pe-g- O --8--8---B---B--4
0.0053
D
" G--0-10-- P

% 20 450 650 850 1050
Number of variables

Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

[From Pankratov and Borodin 2010]

30/40

More experiments for benchmark Max-Sat

\ [OLS | NOLS | TS |NOLSTS| SA | MWs |
OLS 0 457 741 744 730 567
NOLS 160 0 720 750 705 504
TS 0 21 0 246 316 205
NOLS+TS 8 0 152 0 259 179
SA 30 50 189 219 0 185
MWS 205 261 153 178 455 0

Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

[From Pankratov and Borodin 2010]

31/40

More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat

% sat @time| %sat @time| %sat @ time| %sat @ time

SCc-APP| 90.53 93.59s| 99.54 45.14s| 99.77 104.88s| 96.50 2.16s
MS-APP| 83.60 120.14s| 98.24 82.68s| 99.39 120.36s| 89.90 0.48s
SC-CRAFTED| 92.56 61.07s| 99.07 22.65s| 99.72 70.07s| 98.37 0.66s
MS-CRAFTED| 84.18 0.65s| 83.47 0.01s| 85.12 0.47s| 82.56 0.06s
SC-RANDOM| 97.68 41.51s| 99.25 40.68s| 99.81 52.14s| 98.77 0.94s
MS-RANDOM| 88.24 0.49s| 88.18 0.00s| 88.96 0.02s| 87.35 0.06s

Figure:

Table from Poloczek and Williamson 2017

32 /40

Oblivious and non-oblivious local search for k +1
claw free graphs

@ We again consider the maximum weighted independent set problem in
a k + 1 claw free graph. (Recall the argument generalizing the
approximation ratio for the k set packing problem.)

@ The standard greedy algorithm and the 1-swap oblivious local search
both achieve a % approximation for the WMIS in k + 1 claw free
graphs. Here we define an “/-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ¢ vertices and
removing all vertices adjacent to S.

@ For the unweighted MIS, Halldérsson shows that a a 2-swap oblivious
local search will yield a k%rl approximation.

33 /40

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

34 /40

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

34 /40

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”

. 3

k-swap oblivious local search, the approximation ratio improves to 7.

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

@ Intuitively, if one vertex set Vi is small but vertices in V; have large
weights that is better than a solution with many small weight vertices.

34 /40

Berman’s [2000] non-oblivious local search

@ For the weighted MIS, the “l-swap” oblivous local search results
(essentially) in an 3 locality gap for any constant /.

@ Chandra and Halldéssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to %

@ Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V4 and V5, having the same weight,
when is one better than the other?

@ Intuitively, if one vertex set Vi is small but vertices in V; have large
weights that is better than a solution with many small weight vertices.

@ Berman chooses the potential function g(S) =Y, .5 w(v)?. Ignoring
some small €'s, his k-swap non-oblivious local search achieves a

locality gap of %H for WMIS on k + 1 claw-free graphs.

34 /40

Some (almost) concluding comments (for now) on
local search

@ For the metric k-median problem, until recently, the best
approximation was by a local search algorithm. Using a p-flip (of
facilities) neighbourhood, Arya et al (2001) obtain a 3+2/p
approximation which yields a 3 4 € approximation running in time

O(n?/¢).

@ Li and Svensson (2013) obtained a (1 + /3 4 ¢) =~ 2.732 + ¢
LP-based approximation running in time O(n/€"). Surprisingly, they
show that an o approximate “pseudo solution” using k + ¢ facilities
can be converted to an « 4 € approximate solution running in n0(c/e)
times the complexity of the pseudo solution. The latest improvement
is a 2.633 + ¢ approximation by Ahmadian et al (2017).

@ An interesting (but probably difficult) open problem is to use non
oblivious local search for the metric k-median, facility location, or
k-means problems. These well motivated clustering problems play an
important role in operations research, CS algorithm design and a0

End of current concluding remarks on local search

Perhaps the main thing to mention now is that local search is the
basis for many practical algorithms, especially when the idea is
extended by allowing some well motivated ways to escape local
optima (e.g. simulated annealing, tabu search) and combined with
other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn't been
much interest in formalizing the method and establishing limits.

We will be discussing paradigms relating to Linear Programming
(LP). LP is often solved by some variant of the simplex method,
which can be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

Our next “paradigm” is max flow and flow based algorithms and max
flow is often solved by some variant of the Ford Fulkerson method
which also can be thought of as a local search algorithm.

36

40

Ford Fulkerson max flow based algorithms

A number of problems can be reduced to the max flow problem. As
suggested, max flow itself can be viewed as a local search algorithm.

Flow Networks

A flow network F = (G, s, t, c) consists of a “bi-directional” graph
G = (V,E) , asource s and termnal node t, and c is a non-negative real
valued (capacity) function on the edges.

What is a flow
A flow f is a real valued function on the edges satisfying the following
properties:
Q f(e) < c(e) for all edges e (capacity constraint)
Q f(u,v)=—f(v,u) (skew symmetry)
© For all nodes u (except for s and t), the sum of flows into (or out of)
u is zero. (Flow conservation).

Note: this is the “flow in = flow out” constraint for the convention of
only having non negative flows.)4

The max flow problem

@ The goal of the max flow problem is to find a valid flow that
maximizes the flow out of the source node s. As we will see this is
also equivalent to maximizing the flow in to the terminal node t.
(This should not be surprising as flow conservation dictates that no
flow is being stored in the other nodes.) We let
val(f) = |f| denote the flow out of the source s for a given flow f.

@ We will study the Ford Fulkerson augmenting path scheme for
computing an optimal flow. | am calling it a scheme as there are
many ways to instantiate this scheme although | dont view it as a
general paradigm in the way | view (say) greedy and DP algorithms.

@ | am assuming that many people in the class have seen the Ford
Fulkerson algorithm so | will discuss this quickly. | am following the
development of the model and algorithm as in Cormen et al (CLRS).
That is, we have negative flows which simplifies the analysis but may
be less intuitive.

38 /40

A flow f and its residual graph

@ Given any flow f for a flow network F = (G, s, t, c), we can define
the residual graph Gr = (V, E(f)) where E(f) is the set if all edges e
having positive residual capacity ; i.e. the residual capacity of e wrt
to fis cr(e) = c(e) — f(e) > 0.

@ Note that c(e) — f(e) > 0 for all edges by the capacity constraint.
Also note that with our convention of negative flows, even a zero
capacity edge (in G) can have residual capacity.

@ The basic concept underlying Ford Fulkerson is that of an
augmenting path which is an s — t path in Gf. Such a path can be
used to augment the current flow f to derive a better flow f'.

@ Given an augmenting path 7 in Gr, we define its residual capacity wrt
f as c¢r(m) = min{cr(e)|e in the path 7}.

39 /40

The Ford Fulkerson scheme

Ford Fulkerson
f:=0;
Gr := G %initialize
While there is an augmenting path in G
Choose an augmenting path 7
f=Ff+ i = f % Note this also changes G¢
End While

| call this a scheme rather than a well specified algorithm since we have
not said how one chooses an augmenting path (as there can be many such
paths)

40 /40

	Lecture 2

