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Lecture 3

Announcements:

I have posted the first 6 questions for assignment 1. When necessary,
I will elaborate (and sometimes give hints) for questions during class.
So please do ask for any clarifications that are needed!

I am reserving Thursdays 3-4 for an office hour but I welcome
discussing the course whnever I am free.

Todays agenda:

Continue whirlwind discussion of basic combinatorial algorithms

Dynamic programming

Local search

Ford Fulkerson Max flow and max flow based based algorithms if time
permits.
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A pseudo polynomial time “natural DP” for
knapsack

Consider an instance of the (NP-hard) knapsack problem; that is we are
given item {(vk , sk)|1 ≤ k ≤ n} and a knapsack capacity C . Following
along the lines of the WISP DP, the following is a reasonably natural
approach to obtain a “pseudo polynomal space and time” DP:

For 1 ≤ i ≤ n and 0 ≤ c ≤ C , define V [i , c] to be the value of an
optimum solution using items Ii ⊆ {I1, . . . , Ii} and satisfying the size
constraint that

∑
Ij∈Ii sj ≤ c .

A corresponding recursive DP is as follows:
1 V [0, c] = 0 for all c
2 For i > 0, V [i ] = max{A,B} where

F A = V [i − 1, c]
F B = vi + V [c − si ] if si ≤ c and V [i − 1, c] otherwise.

Note: easy to make mistakes so again have to verify that this recursive
definition is correct.

The space and time complexity is O(nC ) which is pseudo polynomial
in the sense that C can be exponential in the encoding of the input.

3 / 40



An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in the numeric value
v (rather than the encoded length |v |) of the input values.

Define S [j , v ] = the minimum size s needed to achieve a profit of at least
v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we give in the form of an array) such
that

1 the desired result can be easily obtained from this array

2 each entry of the array can be easily computed given “previous
entries”
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How to compute the array S [j , v ] and why is this
sufficient

1 The value of an optimal solution is max{v |S [n, v ] is finite}.
2 We have the following equivalent recursive definition that shows how

to compute the entries of S [j , v ] for 0 ≤ j ≤ n and v ≤∑n
j=1 vj .

I Basis: S [0, v ] =∞ for all v
I Induction: S [j , v ] = min{A,B} where A = S [j − 1, v ] and

B = S [j − 1,max{v − vj , 0}] + sj .

3 It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.

4 For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.

5 The running time is O(n,V ) where V =
∑n

j=1 vj .
6 Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])

is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility.5 / 40



The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2

.

We will need a combinaton of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.
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The high level idea of the makespan PTAS

Let T be a candidate for an achievable makespan value. Depending
on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled values of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a soluton that achieves
makespan T .

If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

We use binary search to find a good T .
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The optimal DP for makespan on identical machines
when there is a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of szie zi .

The array we will use to obtain the desired optimal makespan is as
follows:
M[x1, . . . , xd ] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T . (Here we can
assume T ≥ max pi ≥ max zi so that this minimum is finite.)

The n jobs can be scheduled within makespan T iff M[n1, , nd ] is at
most m.
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Computing M[x1, . . . , xd ]

Clearly M[0, . . . , 0] = 0 for the base case.

Let V = {(v1, , vd)|∑i vizi ≤ T} be the set of configurations that
can complete on one machine within makespan T ; that is, scheduling
vi jobs with size zi on one machine does not exceed the target
makespan T .

M[x1, . . . , xd ] = 1 + min(v1,...,vd )∈V :vi≤xi M[x1 − v1, . . . , xd − vd ]

There are at most nd array elements and each entry uses
approximately nd time to compute (given previous entries) so that the
total time is O(n2d).

Must any (say DP) algorithm be exponential in d?
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Large jobs and scaling (not worrying about any
integrality issues)

A job is large if pi ≥ T/s = T · ε
Scale down large jobs to have size p̃i = largest multiple of T/(s2)

pi − p̃i ≤ T/(s2)

There are at most d = s2 job sizes p̃

There can be at most s large jobs on any machine not exceeding
target makespan T .
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Taking care of the small jobs and accounting for the
scaling down

We now wish to add in the small jobs with sizes less than T/s. We
continue to try to add small jobs as long as some machine does not
exceed the target makespan T . If this is not possible, then makespan
T is not possible.

If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T/(s2) so this only increases the makespan to (1 + 1/s)T .
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Local Search: the other conceptually simplest
approach

We now begin a discussion of the other (than greedy) conceptually
simplest search/optimization algorithm, namely local search.

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S ′ in “Nbhd(S)”
S := S ′

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What consititutes a reasonable definition of a local neighbourhood

Nbhd(S)?
3 What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific. 13 / 40



Towards a precise definition for local search

We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any efficiently computed solution.
We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some “small” k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 We can view Ford Fulkerson flow algorithms (to be discussed) as local
search algorithms where the (possibly exponential size but efficiently
searchable) neighbourhood of a flow solution S are flows obtained by
adding an augmenting path flow.
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What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search. I think it
should be called greedy local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.
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The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

I Given a (undirrected) graph G = (V ,E ) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) of V so as to maximize the size (or weight) of
the cut E ′ = {(u, v)|u ∈ A, v ∈ B, (u, v) ∈ E}.

We can think of the partition as a characteristic vector χ in {0, 1}n
where n = |V |. Namely, say χi = 1 iff vi ∈ A.

Let Nd(A,B) = {(A′,B ′) | the characteristic vector of (A′) is
Hamming distance at most d from (A)}

So what is a natural local search algorithm for (weighted) max cut?
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A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

Initialize (A,B) arbitrarily
WHILE there is a better partition (A′,B ′) ∈ N1(A,B)

(A,B) := (A′,B ′)
END WHILE

This single move local search algorithm is a 1
2 approximation; that is,

when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) ≥ 1

2W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the
approximation ratio is at least as good as the locality gap.
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Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:∑
v∈A

w(u, v) ≤
∑
v∈B

w(u, v) for every u ∈ A

Summing over all u ∈ A, we have:

2
∑
u,v∈A

w(u, v) ≤
∑

u∈A,v∈B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
∑

u,v∈B
w(u, v) ≤

∑
u∈A,v∈B

w(u, v) = w(A,B)

Adding these two inequalites and dividing by 2, we get:∑
u,v∈A

w(u, v) +
∑

u,v∈B
w(u, v) ≤ w(A,B)

Adding w(A,B) to both sides we get the desired W ≤ 2w(A,B).
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The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.

I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the state 1
2 totality ratio

by only continuing when we find a solution (A′,B ′) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A′,B ′) ≥ (1 + ε)w(A,B) for any ε > 0

This results in a totality ratio 1
2(1+ε) with the number of iterations

bounded by n
ε logW .
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Final comment on this local search algorithm

It is not hard to find an instance where the single move local
search approximation ratio is 1

2 .

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B)
still results in an approximation ratio that is essentially 1

2 .
And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

There is a vector program relaxation of a quadratic program that
leads to a .878 approximation ratio.
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Exact Max-k-Sat

Given: An exact k-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i . . . ∨ `ki ) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .
In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

It is NP hard to achieve an approximation better than 7
8 for (exact)

Max-3-Sat and hence for the non exact versions of Max-k-Sat for
k ≥ 3.
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The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment τ
WHILE there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ)

τ := τ̂
END WHILE
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How good is this algorithm?

Note: Following the standard convention for Max-Sat, I am using
approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3 .

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment τ such that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses,

and we say that the “totality ratio” is at least 2
3 .

(More generally for Exact Max-k-Sat the ratio is k
k+1). This ratio is

essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with (for example) a
greedy algorithm and then apply local search. 23 / 40



Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let
I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si ) be the corresponding weight.

We will say that a clause involves a variable xj if either
xjor x̄j occurs in the clause. Then for each j , let

I Aj be those clauses in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj

such that it is the literal xj or x̄j that is satisfied in C
by τ .

I Cj be those clauses in S2 involving the variable xj .

Let W (Aj),W (Bj),W (Cj) be the corresponding weights.
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Analysis of the oblivious local search (continued)

Summing over all variables xj , we get

I 2W (S0) =
∑

j W (Aj) noting that each clause in S0 gets counted twice.
I W (S1) =

∑
j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.
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Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.

26 / 40



Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .
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The non-oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
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Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1

2
P2,j −

3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain

3W (S0) ≤W (S1) + W (S2)
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Some comparative experimental results for local
search based Max-Sat algorithms
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Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin 2010]
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More experiments for benchmark Max-Sat

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.

References

1. E. Aarts and J. Lenstra, editors. Local Search in Combinatorial Optimization.
Princeton University Press, second edition, 2003.

2. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in
hard optimization problems. Nature, 435:759–764, 2005.

3. D. Achlioptas, A. Naor, and Y. Peres. On the maximum satisfiability of random
formulas. JACM, 54(2), 2007.

4. D. Achlioptas and Y. Peres. The threshold for random k-sat is 2klog2 − o(k).
JAMS, 17(2):947–973, 2004.

5. J. Argerlich, C. M. Li, F. Manya, and J. Planes. The first and second max-sat
evaluations. Journal on Satisfiability, Boolean Modeling and Computation, 4:251–
278, 09/2008 2008.

6. T. Asano and D. P. Williamson. Improved approximation algorithms for max sat.
J. Algorithms, 42(1):173–202, 2002.

[From Pankratov and Borodin 2010]

31 / 40



More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson 2017
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Oblivious and non-oblivious local search for k + 1
claw free graphs

We again consider the maximum weighted independent set problem in
a k + 1 claw free graph. (Recall the argument generalizing the
approximation ratio for the k set packing problem.)

The standard greedy algorithm and the 1-swap oblivious local search
both achieve a 1

k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 2

k+1 approximation.
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Berman’s [2000] non-oblivious local search

For the weighted MIS, the “`-swap” oblivous local search results
(essentially) in an 1

k locality gap for any constant `.

Chandra and Halldóssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to 3

2k .

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
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Some (almost) concluding comments (for now) on
local search

For the metric k-median problem, until recently, the best
approximation was by a local search algorithm. Using a p-flip (of
facilities) neighbourhood, Arya et al (2001) obtain a 3 + 2/p
approximation which yields a 3 + ε approximation running in time
O(n2/ε).

Li and Svensson (2013) obtained a (1 +
√

3 + ε) ≈ 2.732 + ε
LP-based approximation running in time O(n1/ε

2
). Surprisingly, they

show that an α approximate “pseudo solution” using k + c facilities
can be converted to an α + ε approximate solution running in nO(c/ε)

times the complexity of the pseudo solution. The latest improvement
is a 2.633 + ε approximation by Ahmadian et al (2017).

An interesting (but probably difficult) open problem is to use non
oblivious local search for the metric k-median, facility location, or
k-means problems. These well motivated clustering problems play an
important role in operations research, CS algorithm design and
machine learning.
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End of current concluding remarks on local search

Perhaps the main thing to mention now is that local search is the
basis for many practical algorithms, especially when the idea is
extended by allowing some well motivated ways to escape local
optima (e.g. simulated annealing, tabu search) and combined with
other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn’t been
much interest in formalizing the method and establishing limits.

We will be discussing paradigms relating to Linear Programming
(LP). LP is often solved by some variant of the simplex method,
which can be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

Our next “paradigm” is max flow and flow based algorithms and max
flow is often solved by some variant of the Ford Fulkerson method
which also can be thought of as a local search algorithm.
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Ford Fulkerson max flow based algorithms

A number of problems can be reduced to the max flow problem. As
suggested, max flow itself can be viewed as a local search algorithm.

Flow Networks

A flow network F = (G , s, t, c) consists of a “bi-directional” graph
G = (V ,E ) , a source s and termnal node t, and c is a non-negative real
valued (capacity) function on the edges.

What is a flow

A flow f is a real valued function on the edges satisfying the following
properties:

1 f (e) ≤ c(e) for all edges e (capacity constraint)

2 f (u, v) = −f (v , u) (skew symmetry)

3 For all nodes u (except for s and t), the sum of flows into (or out of)
u is zero. (Flow conservation).
Note: this is the “flow in = flow out” constraint for the convention of
only having non negative flows. 37 / 40



The max flow problem

The goal of the max flow problem is to find a valid flow that
maximizes the flow out of the source node s. As we will see this is
also equivalent to maximizing the flow in to the terminal node t.
(This should not be surprising as flow conservation dictates that no
flow is being stored in the other nodes.) We let
val(f ) = |f | denote the flow out of the source s for a given flow f .

We will study the Ford Fulkerson augmenting path scheme for
computing an optimal flow. I am calling it a scheme as there are
many ways to instantiate this scheme although I dont view it as a
general paradigm in the way I view (say) greedy and DP algorithms.

I am assuming that many people in the class have seen the Ford
Fulkerson algorithm so I will discuss this quickly. I am following the
development of the model and algorithm as in Cormen et al (CLRS).
That is, we have negative flows which simplifies the analysis but may
be less intuitive.
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A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we can define
the residual graph Gf = (V ,E (f )) where E (f ) is the set if all edges e
having positive residual capacity ; i.e. the residual capacity of e wrt
to f is cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.
Also note that with our convention of negative flows, even a zero
capacity edge (in G) can have residual capacity.

The basic concept underlying Ford Fulkerson is that of an
augmenting path which is an s − t path in Gf . Such a path can be
used to augment the current flow f to derive a better flow f ′.

Given an augmenting path π in Gf , we define its residual capacity wrt
f as cf (π) = min{cf (e)|e in the path π}.
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The Ford Fulkerson scheme

Ford Fulkerson

f := 0 ;
Gf := G %initialize
While there is an augmenting path in Gf

Choose an augmenting path π
f̃ := f + fpi ; f := f̃ % Note this also changes Gf

End While

I call this a scheme rather than a well specified algorithm since we have
not said how one chooses an augmenting path (as there can be many such
paths)
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