
CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2017

Allan Borodin

January 16, 2017

1 / 39

Lecture 2

Announcements:

I plan to have the first couple of questions for assignment 1.

Todays agenda:

Continue “whirlwind” discussion of basic combinatorial algorithms.

Greedy and myopic algorithms.

The priority model (which we briefly introduced in Lecture 1)

Dynamic programming

A perspective on algorithm design and analysis

I (consistent with many texts) am organizing material mainly by the
algorithmic paradigm(s) used to solve a problem (to the extent we
can identify specific paradigms.

When an algorithmic approach works for a given problem, we can ask
if that approach still is useful for a generalization of that problem?

When an approach does not work for a problem, is there a way to
extend that approach?

2 / 39

Vertex cover: where the “natural greedy” is not best

We will consider two examples (weighted vertex cover and set
packing) where the “natural greedy algorithm” does not yield a good
approximation.

The vertex cover problem: Given node weighted graph G = (V ,E),
with node weights w(v), v ∈ V .
Goal: Find a subset V ′ ⊂ V that covers the edges (i.e.
∀e = (u, v) ∈ E , either u or v is in V ′) so as to mininize

∑
v∈V ′ w(v).

Even for unweighted graphs, the problem is known to be NP-hard to
obtain a 1.3606 approximation and under another (not so universally
believed) conjecture (UGC) one cannot obtain a 2− ε approximation.

For the unweighted problem, there are simple 2-approximation greedy
algorithms such as just taking V ′ to be any maximal matching.

The set cover problem is as follows: Given a weighted collection of
sets S = {S1, S2, . . . ,Sm} over a universe U with set weights w(Si).
Goal: Find a subcollection S ′ that covers the universe so as to
minimize

∑
Si∈S′ w(Si).

3 / 39

The natural greedy algorithm for weighted vertex
cover (WVC)

If we consider vertex cover as a special case of set cover (how?), then the
natural greedy (which is essentially optimal for set cover) becomes the
following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure : Natural greedy algorithm for weighted vertex cover. Approximation ratio
Hn ≈ ln n where n = |V |.

4 / 39

Clarkson’s [1983] modified greedy for WVC

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

w ′(v) := w(v) for all v ∈ V
% w ′(v) will be the residual weight of a node

While there are uncovered edges
Let v be the node minimizing w ′(v)/d ′(v)
w :=w ′(v)/d ′(v)
w ′(u) :=w ′(u)− w for all u ∈ Nbhd(v)

% For analysis only, set we(u, v) = w
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd(v)

End While

Figure : Clarkson’s greedy algorithm for weighted vertex cover. Approximation
ratio 2. Invariant: w(v) = w ′(v) + sume∈Ewe(e)

5 / 39

Greedy decisions and priority algorithms

For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)
If we do not insist on greediness, then priority algorithms would best
have been called myopic algorithms.
We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).
The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.
We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.

6 / 39

The priority model definition

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider deterministic fixed order priority algorithms. Since I
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

Initially there is some (possibly infinite) set J of potential inputs.
The algorithm chooses a total ordering π on J . Then the adversary
selects a subset I ⊂ J of actual inputs so that I becomes the input
to the priority algorithm. The input items I1, . . . , In are ordered
according to π.

In iteration k for 1 ≤ k ≤ n, the algorithm considers input item Ik
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dk about this input item.

7 / 39

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering π of J
Let I ⊂ J be the input instance
S := ∅ % S is the set of items already seen
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
I := I \ S
Ii := minπ{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}

end

Figure : The template for a fixed priority algorithm

8 / 39

Some comments on the priority model

A special (but usual) case is that π is determined by a function
f : J → < and and then ordering the set of actual input items by
increasing (or decreasing) values f (). (We can break ties by say using
the index of the item to provide a total ordering of the input set.)
N.B. We make no assumption on the complexity or even the
computability of the ordering π or function f .
NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
index of the item.
As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global
information.)

9 / 39

The adaptive priority model template

J is the set of all possible input items
I is the input instance
S := ∅ % S is the set of items already considered
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
decide on a total ordering πi of J
I := I \ S
Ii := min≤πi

{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}
J := J \ {I : I ≤πi Ii}
% some items cannot be in input set

end

Figure : The template for an adaptive priority algorithm

10 / 39

Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

1 For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights vj = |fj − sj |), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

2 For the knapsack problem, no priority algorithm can achieve a
constant approximation. We note that the maximum of two greedy
algorithms (sort by value, sort by value/size) is a 2-approximation.

3 For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

4 As previously mentioned, for deterministic fixed order priority
algorithms, there is an Ω(logm/ log logm) inapproximation bound for
the makespan problem in the restricted machines model.

11 / 39

Greedy algorithms for the set packing problem

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant (wrt m) s ≥ 3, there is
an Ω(s/ log s) hardness of approximation assuming P 6= NP.

Set packing is the underlying allocation problem in what are called
combinatorial auctions as studied in mechanism design.

We will consider two “natural” greedy algorithms for the s-set
packing problem and a somewhat less obvious greedy algorithm for
the set packing problem. These greedy algorithms are all fixed order
priority algorithms.

12 / 39

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

13 / 39

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, greedy-by-weight-per-size is only an m-approximation
where m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation.

14 / 39

Improving the approximation for greedy set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is essentially the best possible approximation assuming NP 6= ZPP.
15 / 39

Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedywt
applied to sets of cardinality at most

√
m/k . Set PGreedyk to be the best

of Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .

16 / 39

(k + 1)-claw free graphs

A graph G = (V ,E) is (k + 1)-claw free if for all v ∈ V , the induced
subgraph of Nbhd(v) has at most k independent vertices (i.e. does not
have a k + 1 claw as an induced subgraph).

(k + 1)-claw free graphs abstract a number of interesting applications.

In particular, we are interested in the (weighted) maximum
independent set problem (W)MIS for (k + 1)-claw free graphs. Note
that it is hard to approximate the MIS for an arbiitrary n node graph
to within a factor n1−ε for any ε > 0.

We can (greedily) k-approximate WMIS for (k + 1)-claw free graphs.

The (weighted) k-set packing problem is an instance of (W)MIS on
k + 1-claw free graphs. What algorithms generalize?

There are many types of graphs that are k + 1 claw free for small k;
in particular, the intersection graph of translates of a convex object in
the two dimensional plane is a 6-claw free graph. For rectangles, the
intersection graph is 5-claw free.

17 / 39

Extensions of the priority model: priority with
revocable acceptances

For packing problems, we can have priority algorithms with revocable
acceptances. That is, in each iteration the algorithm can now reject
previously accepted items in order to accept the current item.
However, at all times, the set of currently accepted items must be a
feasible set and all rejections are permanent.

Within this model, there is a 4-approximation algorithm for the
weighted interval selection problem WISP (Bar-Noy et al [2001], and
Erlebach and Spieksma [2003]), and a ≈ 1.17 inapproximation bound
(Horn [2004]). More generally, the algorithm applies to the weighted
job interval selection problem WJISP resulting in an 8-approximation.

The model has also been studied with respect to the proportional
profit knapsack problem/subset sum problem (Ye and B [2008])
improving the constant approximation. And for the general knapsack
problem, the model allows a 2-approximation.

18 / 39

The Greedyα algorithm for WJISP

The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S s.t. (S/Ci) ∪ {Ii} feasible
if v(Ci) ≤ α · v(Ii) then

S := (S/Ci) ∪ {Ii}
end if

END FOR

Figure : Priority algorithm with revocable acceptances for WJISP

The Greedyα algorithm (which is not greedy by my definition) has a tight
approximation ratio of 1

α(1−α) for WISP and 2
α(1−α) for WJISP. 19 / 39

Priority Stack Algorithms

For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is insure the minimality of the
solution; that is, while popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.

20 / 39

Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence is chordal) by ordering the intervals such that
f1 ≤ f2 . . . ≤ fn. Using this ordering we know that there is a greedy (i.e.
priority) algorithm that optimally selects a maximum size set of non
intersecting intervals. The same algorithm (and proof by charging
argument) using a PEO for any chordal graph optimally solves the
unweighted MIS problem. The following priority stack algorithm provides
an optimal solution for the WMIS problem on chordal graphs.

21 / 39

The optimal priority stack algorithm for the
weighted max independent set problem (WMIS) in
chordal graphs

Stack := ∅ % Stack is the set of items on stack
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
For i = 1..n

Ci := nodes on stack that are adjacent to vi
If w(vi) > w(Ci) then push vi onto stack, else reject

End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure : Priority stack algorithm for chordal WMIS
22 / 39

A k-PEO and inductive k-independent graphs

An alternative way to describe a PEO is to say that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number 1.

We can generalize this to a k-PEO by saying that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number at most k .

We will say that a graph is an inductive k-independent graph if it has
a k-PEO.

Inductive k-independent graphs generalize both chordal graphs
and k + 1-claw free graphs.

The intersection graph induced by the JISP problem is an
inductive 2-independent graph.

Using a k-PEO, a fixed-order priority algorithm (resp. a priority
stack algorithm) is a k-approximation algorithm for MIS (resp.
for WMIS) wrt inductive k-independent graphs.

23 / 39

More extensions of the priority model

So far we have been implicitly assuming deterministic priority
algorithms. We can allow the ordering and/or the decisions to be
randomized.

A special case of fixed priority with randomized orderings is when the
input set is ordered randomly without any dependence on the set of
inputs. In the online setting this is called the random order model.

The revocable acceptances model is an example of priority algorithms
that allow reassignments (of previous decisions) to some extent or at
some cost.

The partial enumeration greedy is an example of taking the best of
some small set of adaptive priority algorithms.

Priority stack algorithms are an example of 2-pass (or multi-pass)
priority algorithms where in each pass we apply a priority algorithm.
Of course, it has to be well specified as to what information can be
made available to the next pass.

24 / 39

The random order model (ROM)

Motivating the random order model

The random order model provides a nice compromise between the often
unrealistic negative results for worst case (even randomized) online
algorithms and the often unrealistic positive setting of inputs being
generated by simple distributions.

In many online scenarios, we do not have realistic assumptions as to
the distributional nature of inputs (so we default to worst case
analysis). But in many applications we can believe that inputs do
arrive randomly or more precisely uniformly at random.

The ROM can be (at least) traced back to what is called the
(classical) secretary (aka marriage or dowry) problem, popularized in
a Martin Gardner Scientific American article.

As Fiat et al (SODA 2015) note, perhaps Johannes Kepler
(1571-1630) used some secretary algorithm when interviewing 11
potential brides over two years.

25 / 39

The secretary problem

The classical problem (which has now been extended and studied in many
different variations is as follows:

The classic problem (as in the Gardiner article) assumes an
adversarially chosen set of distinct values for (say N) items that arrive
in random order (e.g. candidates for a position, offers for a car, etc.).
N is assumed to be known.

Once an item (e.g. secretary) is chosen, that decision is irrevocable.
Hence, this boils down to finding an optimal stopping rule, a subject
that can be considered part of stochastic optimization.

The goal is to select one item so as to maximize the probability that
the item chosen is the one of maximum value.

For any set of N values, maximizing the probability of choosing the
best item immediately yields a bound for the expected (over the
random orderings) value of the chosen item. For an “ordinal
algorithm”, these two measures are essentially the same. Why?

26 / 39

The secretary problem continued

It is not difficult to show that any deterministic or randomized
(adversarial order) online algorithm has competitive ratio 1 at most
O(1

N). Hence the need to consider the ROM model to obtain more
interesting (and hopefully more meaningful) results.

We note (and this holds more generally) that “positive results” for
the ROM model subsume the stochastic optimization scenario where
inputs are generated by an unknown (and hence known) i.i.d. process.
Why?

There are many variations and extensions of the secretary problem
some of which we will consider later (or at least mention).

In general, any online problem can be studied with respect to the
ROM model.

1Recall that for maximization problems, competitive and approximation ratios can
sometimes presented as fractions α = ALG

OPT
≤ 1 and sometimes as ratios c = OPT

ALG
≥ 1. I

will try to follow the convention mainly used in each application.
27 / 39

The optimal stopping rule for the classical secretary
problem

The amusing history of the secretary problem and the following result is
taken up by Ferguson in a 1989 article.

Theorem: For N and r , there is an exact formula for the probability of
selecting the maximum value item after observing the first r items, and
then selecting the first item (if any) that exceeds the value of the items
seen thus far. In the limit as N →∞, the optimal stopping rule is to
observe (i.e. not take) the first r = N/e items. The probability of
obtaining the best item is then 1/e and hence the expected value of the
item chosen is at least 1

e vmax .

28 / 39

Variations and extensions of the secretary problem

Instead of maximizing the probability of choosing the best item, we
can maximize the expected rank of the chosen item.

Perhaps the most immediate extension is to be choosing k elements.

This has been generalized to the matroid secretary problem by
Babaioff. For arbitrary matroids, the approximation ratio remains an
open problem.

Another natural extension is to generalize the selection of one item to
the online (and ROM) edge weighted bipartite matching problem,
where say N = |L| items arrive online to be matched with items in R.
In online matching the goal is usually to maximize the size (for the
unweighted case) or weight of a maximum matching.

I will next to discuss online matching and then later (hopefully) the
extension to the adwords problem where the online nodes L represent
advertisers/bidders with budgets and preferences/values for the R
nodes representing keywords/queries.

29 / 39

The unweighted bipartite matching problem

Before leaving (for now) online, ROM and priority algorithms, I want to
briefly discuss one more (surprising) ROM algorithm (equivalently for this
algorithm, a randomized online algorithm) that has generated a good deal
of recent research.

Let G = (U,V ,E) be an unweighted bipartite graph with edges
E ⊂ U × V . Lets say that the vertices in U are the online vertices
that arrive one at a time u1, . . . un, revealing the offline nodes in V to
which they are adjacent.

The online algorithm must irrecvocably decide whether and how to
match ui to an unmatched v ∈ V (if there is such a node).

It is easy to see that any greedy algorithm (i.e. one that matches
each ui if possible) produces a maximal matching and hence is a
1
2 -approximation (following the convention here for using fractional
approximation ratios). This is also a tight bound for any deterministic
online algorithm as can be seen by a simple 2× 2 bipartite graph.

30 / 39

The Karp, Vazirani, Varizani (KVV) algorithm

The KVV Ranking algorithm chooses a random permutation of the
nodes in V and then when a node u ∈ U appears, it matches u to the
highest ranked unmatched v ∈ V such that (u, v) is an edge (if such
a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

The analysis of this algorithm can be used to show that there is a
deterministic greedy algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.

31 / 39

The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) ≈ .63 approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and other proofs (e.g. in Birnbaum and Mathieu [2008],
Devanur, Jain, Kleinberg [2013]).

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727.

32 / 39

Dynamic programming and scaling

We now move on to one of the main objects of study in an undergraduate
algorithms course.

We have previously seen that with some use of brute force and
greediness, we can achieve PTAS algorithms for the identical
machines makespan which is polynomial in the number n of jobs but
exponential in the number m of machines and 1

ε where 1 + ε is the
approximation guarantee.

For the knapsack problem we had a PTAS that was polynomial in n
and exponential in 1

ε . .

We briefly mentioned that dynamic programming (DP) and scaling
can be used to achieve an FPTAS for the knapsack problem.
We will show how this idea works for the knapsack problem and also
to improve the results for the makespan problem on identical
machines.

NOTE: Defining “useful” precise models of DP algorithms is
challenging.

33 / 39

What is Dynamic Programming (DP)

The application and importance of dynamic programming goes well
beyond search and optimzation problems.

We will consider a few more or less “natural” DP algorithms and at
least one not so obvious DP algorithm.

In greedy like algorithms (and also local search, our next major
paradigm) it is often easy to come up with reasonably natural
algorithms (although we have seen some not so obvious examples)
whereas sometimes the analysis can be relatively involved.

In contrast, once we come up with an appropriate DP algorithm, it is
often the case that the analysis is relatively easy.

Here informally is the essense of DP algorithms: define an approriate
generalization of the problem (which we usually give in the form of a
multi-dimensional array) such that

1 the desired result can be easily obtained from the array S [, , ...]
2 each entry of the array can be easily computed given “previous entries”

34 / 39

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Open problem: Can there be an optimal polynomal time DP (in any
“reasonable” meaning of what is DP) for the maximum size or weight
bipartite matching problem? Note: There are polynomial time
optimal algorithms for these problem.

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

35 / 39

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Open problem: Can there be an optimal polynomal time DP (in any
“reasonable” meaning of what is DP) for the maximum size or weight
bipartite matching problem? Note: There are polynomial time
optimal algorithms for these problem.

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

35 / 39

Bellman 1957 (in the spirit of Samuel Johnson)

Bellman (who introduced dynamic programming) argued against attempts
to formalize DP.

We have purposely left the description a little vague, since it is the spirit
of the approach to these processes that is significant, rather than a letter
of some rigid formulation. It is extremely important to realize that one can
neither axiomatize mathematical formulation nor legislate away ingenuity.
In some problems, the state variables and the transformations are forced
upon us; in others, there is a choice in these matters and the analytic
solution stands or falls upon this choice; in still others, the state variables
and sometimes the transformations must be artificially constructed.
Experience alone, combined with often laborious trial and
error, will yield suitable formulations of involved processes.

36 / 39

Some simple DP algorithms

Let’s begin with an example used in many texts, namely a DP for the
weighted interval scheduling problem WISP.

We have already claimed that no priority algorithm can yield a
constant approximation ratio but that we can obtain a
4-approximation using a revocable accaptance priority algorithm and
an optimal algorithm using a priority stack algorithm.

The optimal DP algorithm for WISP is based on the following
“semantic array”:

I Sort the intervals Ij = [sj , fj) so that f1 ≤ f2 . . . ≤ fn (i.e. the PEO).
I Define π(i) = max j : fj ≤ si (Note; if we do not want intervals to

touch then use fj < si .)
I The definition of π() is specific to this problem and I do not know a

generalization for chordal graphs and hence the DP approach does not
naturally extend.

I For 1 ≤ i ≤ n, Define V [i] = optimal value obtainable from intervals
{I1, . . . Ii}.

37 / 39

The DP for WISP continued

We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1
2 For i > 1, Ṽ [i] = max{A,B} where

F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?

I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly.

38 / 39

The DP for WISP continued

We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1
2 For i > 1, Ṽ [i] = max{A,B} where

F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?
I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly. 38 / 39

Some comments on DP and the WISP DP

We can sort the intervals and compute π() in time O(n log n) and
then sequentially compute the entries of V in time O(1) per iteration.
We can also recursivley compute V , BUT must use memoization to
avoid recomputing entries.
To some extent, the need to use memoization distinguishes dynamic
programming from divide and conquer.
We can extend this DP to optimally solve the weighted interval
scheduling problem when there are m machines; that is, we want to
schedule intervals so that there is no intersection on any machine.
This extension would directly lead to time (and space) complexity
O(nm+1); O(nm) with some more care.
As we will soon discuss, we can model this simple type of DP by a
priority branching tree (pBT) algorithm as formulated by Alekhnovich
et al. Within this model, we can prove that for any fixed m, the width
(and hence the space and thus time) of the algorithm for optimally
scheduling intervals on m machines is Ω(nm). The curse of
dimensionality is necessary within this model.

39 / 39

	Lecture 2

