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Announcements
Announcements

1 There is an interesting talk this Friday at 10:30 at the Fields Institute
(this years Avner Magen memorial lecture). You might want to meet
the speaker whose research interests include spectral algorithms,
spectral graph theory, convex programming, and approximation
algorithms. Here is the title for her talk:
Title: Strongly refuting random constraint satisfaction problems
below the spectral threshold.
The link for the talk is
http://www.fields.utoronto.ca/activities/16-17/Magen-lecture
Light refershments following the talk. After the talk or in the
afternoon, you might want to meet the speaker whose research
interests include spectral algorithms, spectral graph theory, convex
programming, and approximation algorithms.

2 I have posted the first two questions for Assignment 3. I am planning
to post more questions in a day or two and make assignment due in
about 2 weeks.
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Todays agenda

Todays agenda

1 A mention of some of the things we didn’t mention (or barely
mentioned) in the course.

1 Maximizing a set function subject to a cardinality constraint
2 We will mention some of that activity in game theory/mecahnism

design, social choice theory and (even) social networks.
3 Maximizing modula (i.e. linear) and monotone submodular function

subject to matroid (and other independence) constraints.

2 (If time permits) Some things that I think could be research topics.
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Set function maximization

In our MapReduce discussion, we mentioned the densest subgraph problem
and earlier in the course (Lecture 6) we discussed max-cut in the context
of maximizing a non-monotone submodular function. In Lecture 6 we also
briefly discussed the SDP based algorithm (i.e. vector programs) for
Max-2-Sat and mentioned that the same idea applied to max-cut.

Densest subgraph, max cut, max-di-cut and max-sat are problems where
the goal is to maximize a non-monotone set function and hence (given
that they are non-monotone) make sense in their unconstrained version.

Of course, similar to monotone set function maximization problems (such
as max coverage), these problems also have natural constrained versions,
the most studied version being a cardinality constraint.

More generally, there are other specific and arbitrary matroid constraints,
other independence constraints, and knapsack constraints.
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Cardinality constrained set function maximization
Max-k-densest subgraph, max-k-cut, max-k-di-cut, max-k-uncut and
max-k-vertex-coverage are the natural cardinality constrained versions of
well studied graph maximization problems. They all are of the following
form:

Given an edge weighted graph G = (V ,E ,w) with non negative edge
weights w : E → R, find a subset S ⊆ V with |S | = k so as to maximize
some set function f (S). (Of course, In the unweighted versions, w(e) = 1
for all e ∈ E .)

For example, the objective in max-k-uncut is to find S so as to maximize
the edge weights of the subgraphs induced by S and V \ S . That is, in a
social network, divide the graph into two “communities”.

NOTE: Max-k-sat is not the cardinality constrained version of max-sat in
the same sense as the above problems. Although not studied (as far as I
know), the analogous problem would be to find a set of propositional
variables of cardinality k so as to maximize the weights of the satisfied
clauses.
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The SDP/vector program algorithms for the
cardinality constrained problems

In what follows, I will briefly sketch some of the SDP based analysis in
Feige and Langberg [2001]. This paper was proceeded and followed by a
substantial number of important papers including the seminal Goemans
and Williamson [1995] SDP approximation algorithm for max-cut.

(See , for example, Feige and Goemans [1995] and Frieze and Jerrun
[1997] for proceeding work and Halperin and Zwick [2002], Han et al
[2002] and Jäger and Srivastav for some improved and unifying results.)

There are also important LP based results such as the work by Ageev and
Sviridenko [1999, 2004] that introduced pipage rounding.
Many papers focus on the bisection versions where k = n/2 and also
k = σn for some 0 < σ < 1 for which much better approximations atre
known relative to results for a general cardinality k constraint.
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The Goemans and Williamson program algorithm for
max-cut

As stated in Lecture 6, vector programs can be solved to arbitrary
precision within polynomial time.

We introduce {-1,1} variables yi corresponding to the vertex variables
xi . We also need a homogenizing variable y0; the intended meaning is
that vertex vi ∈ S and iff yi = y0.

The max-cut problem can then be represented by the following
(strict) quadratic programming problem:

Maximize 1
2

∑
1≤i<j≤n wij(1− yiyj) subject to

y2i = 1 for 0 ≤ i ≤ n

This is relaxed to a vector program by introducing vectors on the unit
sphere in vi ∈ Rn+1 where now the scalar multiplication becomes the
vector inner product.
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The rounding of the vector program

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value∑
1≤i<j≤n wijPr[vi and vj are separated] =

∑
1≤i<j≤n wij

θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).
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Extending the vector program formulation for the
cardinality constraint

The basic idea is to add an additional constraint:

n∑

i=1

viv0 = 2k − n

It turns out that it is sometimes important to define an improved
relaxation by using instead (for all j ∈ {0, . . . , n}) the “caridnality
constraints”:

∑n
i=1 vivj = vjv0(2k − n)

For vectors vj in the unit sphere, these constraints are equivalent to the
constraints

∑n
i=1 vi = v0(2k − n)

It also turns out that sometimes problems also use the following “triangle
inequality constraints”: vivj + vjvk + vkvi ≥ −1
and vivj − vjvk − vkvi ≥ −1 for all i , j , k ∈ {0, 1, . . . , n}
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What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the SDP results so as
to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.
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The formulation for other set function maximization
problems

The formulation and idea of the relaxation follows the same idea by mainly
changing the objective function. (Recall the objective fax max-2-sat.)

For the max-k-densest subgraph problem, the objective (wrt.

yi ∈ {−1, 1}) is to maximize
∑

eij∈E wij
1+yiy0+yjy0+yiyj

4

The max-k-vertex-coverage problem a special case of the max
coverage where each element (i.e. an edge) occurs in exactly two of
the sets (i.e. vertices).

The objective is to maximize
∑

eij∈E wij
3+yiy0+yjy0−yiyj

4
Here by monotocity we do not have to worry about outputs with
|S | < k

Now to compensate for |S | > k , we optimize Z = w(S)
OPTSDP

+ θ n−|S |n−k .
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The results in Feige and Langbergapproximation algorithms 177

TABLE 1
Approximation ratios achieved on our four maximization problems. Our results appear in

columns in which the SDP technique is mentioned.

Problem Technique Approximation ratio Range

Max-VCk Random 1− "1− k/n#2 all k
Greedy max"1− 1/e! 1− "1− k/n#2# all k
LP 3

4 all k
SDP 0.8 k ≥ n/2
SDP 0.8 k size of

minimum VC
SDP 3/4 +ε all k, universal

ε > 0

Max-DSk Random k"k−1#
n"n−1# all k

Greedy O"k/n# all k
LP k

n
"1− ε# all k, every

ε > 0
SDP k/n+ εk k ∼ n/2

Max-Cutk Random 2k"n−k#
n"n−1# all k

LP 1
2 all k

SDP 1/2 + ε all k, universal
ε > 0

Max-UCk Random/LP 1− 2k"n−k#
n"n−1# all k

SDP 1/2 + εk k ∼ n/2

Max-VCk problem can be viewed as a special case of the Max-k-Coverage
problem.

Several algorithms approximate Min-VC within a ratio of 2, and it is a
long standing open problem whether an approximation ratio of 2 − ε for
some fixed ε > 0 can be achieved in polynomial time.

For Max-VCk we are not yet in a position to formulate a conjecture about
the best possible approximation ratio. The simple algorithm that uniformly
picks a random subset U ⊆ V of size k has an expected approximation
ratio of 1 − "1 − k/n#2. A greedy approximation algorithm presented in
[Hoc95] has an approximation ratio of max"1 − 1/e! 1 − "1 − k/n#2#. An
algorithm based on linear programming was shown in [AS99] to have an
approximation ratio of 3/4.

We present an algorithm based on semidefinite programming that has an
approximation ratio of at least 3/4 + ε some universal constant ε > 0 and
all values of k. When k ≥ n/2, or when k is at least the size of the minimum
vertex cover in the input graph, we achieve an approximation ratio above
0.8. Our algorithm and its analysis use ideas from [NT75, GW95, FG95,
FJ97].

‘
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The results in Jäger and Srivastav

I think the following represents the latest improvements in cardinality
constrained set function maximization for k = σn from Jäger and
Srivastav [2005]

Problem � Prev. Our Method

MAX-k-CUT 0.3 0.527 0.567

MAX-k-UNCUT 0.4 0.5258 0.5973

MAX-k-DIRECTED-CUT 0.5 0.644 0.6507

MAX-k-DIRECTED-UNCUT 0.5 0.811 0.8164

MAX-k-DENSE-SUBGRAPH 0.2 0.2008 0.2664

MAX-k-VERTEX-COVER 0.6 0.8453 0.8784

Table 1: Examples for the improved approximation factors

In summary, we see that our technique of combining the analysis of the random
hyperplane with mathematical programming leads to improvements over many
previously known approximation factors for the maximization problems consid-
ered in this paper. This shows that a more systematic analysis of the semidef-
inite relaxation scheme gives better approximation guarantees and opens room
for further improvements, if better methods for choosing an optimal parameter
set can be designed.

2 The Algorithm

For S ✓ V the set of edges E can be divided in the following way:

E = S1 [̇S2 [̇S3 [̇S4,

where

S1 = {(i, j) | i, j 2 S},

S2 = {(i, j) | i 2 S, j 2 V \ S},

S3 = {(i, j) | i 2 V \ S, j 2 S},

S4 = {(i, j) | i, j 2 V \ S}.

As we will see, we distinguish the six problems MAX-k-CUT, MAX-k-UNCUT,
MAX-k-DIRECTED-CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-
SUBGRAPH, MAX-k-VERTEX-COVER by four {0, 1} parameters a1, a2, a3, a4.
All these problems maximize the sum of a subset of the four edge classes
S1, S2, S3, S4.
For i = 1, 2, 3, 4 we define ai as 1, if the problem maximizes the edge weights
of Si, and 0 otherwise. The following values a1, a2, a3, a4 lead to the specific
problems:

3

‘
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Algorithm design everywhere

It is fair to say that almost every discipline has now been significantly
impacted by computation (and, in particular, by algorithms of one form or
another.) But for me, the question is to what extent does CS bring a
unique perspective to another discipline? (And, of course, one should
consider how CS has been significantly influenced by other disciplines.)

Computing had its start in data processing (becoming data base and
information systems) and scientific computing (mainly in the physical and
mathematical sciences). And in turn these fields provided much insight
and results adapted within CS. More recently (relative to the initial
applications) has been the impact of CS in the biological sciences.

And perhaps even more recently (ie. last 15 years), the impact has also
spread to the social sciences. What, if any, is the unique perspective that
CS brings to (say) a field such as game theory/mechanism design which is
a well developed subject grounded in economics and mathematics?
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What is mechanism design and social choice theory?

In game theory, we are given a “game” and the goal is to understand and
analyze the strategies of agents and deduce the resulting outcome(s).

The raison d’etre of mechanism design is to design mechanisms (for
example, algorithms to allocate and price sets of items) so as to induce
games with desireable outcomes. It is therefore sometimes called inverse
game theory.

The agents in game theory and mechanism design traditionally have
cardinal (e.g. monetary values) utilities wheres in social choice theory
(e.g. voting, peer evaluation), agents usually have preferences. With that
possible distinction in mind, we can view social choice theory as part of
game theory/mechanism design.
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More on the nature of mechanism design

In mechanism design, one designs games where preferences (or payoffs) are
unknown (i.e. private information), so when players act rationally
“desirable outcomes” emerge. (Note: It is often argued as to if and when
individuals act rationally.)

Mechanism design is a type of algorithm design where private inputs are
coming from self interested strategic agents.

Traditionally, mechanism design involves money (to some extent) to
incentivize agents to choose strategies leading to a desireable outcome.

There is also an area of mechanism design without money. This includes
stable matching, fair division, and voting theory. See, for example, see
Chapters 11,12,13 in the game theory text by Karlin and Peres.
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Auctions

One prominent part of mechanism design concerns auctions. A reasonably
general auction setting consists of the following ingrediants:

A set (or multiset) M of items to be sold.

A set U of buyers having valuations for various sets (or multisets) of
items and possibly a budget.

A number of sellers having costs for producing items.

The outcome of an auction mechanism is a “feasible allocation” of
the items to the buyers so as to achieve certain desired goals. That is,
there are contraints on what allocations are feasible.

The above formulation precludes externalities.)
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Auctions and mechanism design
If all information is publicly known, then this is a pure combinatorial
problem that requires an algorithm to compute an optimal or near optimal
desireable allocation. There are no strategic considerations.

But in mechanism design we assume that some information (e.g. the
valuations and/or budgets of the buyers, the costs of the sellers) is private.

Because agents (e.g. buyers or sellers) are strategic they may not be
truthful in reporting their private information. A mechanism needs to
incentivize strategic behaviour to achieve a desireable outcome given only
partial or no prior knowledge of the private information.

In Bayesian mechanism design, the mechanism (and perhaps the agents)
have prior common distributional knowledge about the private information.

The objective of a mechanism may be to try to optimize social welfare
(also called social surplus) or the mechanism may itself be viewed as an
agent trying to maximize its revenue.
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So what, if any, is the unique perspective that CS
brings to mechanism design?

Nisan and Ronen [1999] established Algorithmic game theory (AGT) by
the recognition that the kinds of large scale applications that are now
possible (i.e. online auctions) requires computationally efficient algorithms.
Given that we strongly believe that optimality is not efficiently obtainable
for many combinatorial problems, we have to settle for approximations.

It is this computational awareness and the interest in approxmation that
was a rather unusual (if not unique) perspective coming from CS.

And now there is also an acknowledgement that agents (e.g. say the
buyers) have to understand (and be able to execute) their possible
strategies and hence, in practice, one often wants (or requires)
conceptually simple auctions.
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Combinatorial auctions: an example of a mechanism
design problem

As we mentioned, the suggested framework is rather general and one
usually considers more restrictive settings. Lets consider one setting that is
perhaps the most studied in theoretical computer science.

The (direct revelation) combinatorial auction (CA) problem

In the CA problem, there is a set M of m items, a set U of n buyers, and
one seller which we can also view as the Mechanism. Each agent i has a
private valuation function vi : 2M → R≥0. Each agent will submit bids
bi (S) ≥ 0 for the subsets S it desires. The mechanism will allocate a
desired subset Si (possibly the empty subset) to each agent and will
charge a price pi (Si ) ≤ bi (Si ) for the set allocated. The quasi linear utility
of agent i for this allocation is ui (Si ) = vi (Si )− pi (Si ). A feasible
allocation is a collection of disjoint subsets Si .
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The CA problem continued

What is the goal or utility of the seller/mechanism?

One possible goal is social welfare/surplus; namely, to obtain a feasible
allocation that maximizes the values of the allocated sets.
Note: This is equivalent to maximizing the utilties of the allocated sets +
the revenue collected by the seller/mechanism.

A specific example of a CA is the wireless spectrum auction. Here we
envision the government (i.e. the mechanism) is allocating licenses for
various collections of spectrum frequencies and it is not completely
unreasonable to assume that the goal of the mechanism is social welfare.
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CA problem continued
In its generality, each agent has a value for each possible subset of items.
This requires an exponential (in m) input representation. To
algorithmically accomodate (possibly exponential) size set system
problems, one can assume some sort of “oracle” such as a value oracle (as
we discussed for the problem of maximizing a non-monotone submodular
function.) that given S will return a value, say bi (S).

In practice, many CA problems can be represented explicitly and succinctly.
For example, if each agent is interested in only one set. This is referred to
as a single-minded CA. As long, as each agent is only interested in a few
sets, the CA problem can be represented explicitly and succinctly.

Another explictly represented CA is the sCA problem where every desired
set has cardinality at most s (for some small constant s).

Note: We assume that vi (∅) = 0 and that vi (S) is a monotone set
function for every i (i.e. free disposal). Thus, sets that are not explicitly
given values inherit their value from a desired subset of largest value.
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The CA problem continued and what is algorithmic
mechanism design

What is the algorithmic challenge of this problem?

The underlying allocation problem is the set packing problem; namely,
given a collection of sets S = {S1, S2, . . . ,St}, where each set Sj has a
value vj , choose a subcollection S ′ of disjoint sets so as to maximize∑
{j :Sj∈S′} vj .

As we previously discussed, this problem is NP-hard and NP-hard to

approximatte to within a factor m
1
2
−ε, even when all vj = 1 (i.e. the

unweighted case).

Furthermore, the set packing problem is NP hard even when all sets have
cartdinality at most s (i.e. the underlying allocation problem for the sCA
problem) for s ≥ 3 and hard to approximate to a factor Ω( s

ln s ).
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Strategic behaviour meets computational complexity
We will soon discuss truthfulness where bidding truthfully is a dominant
strategy. A truthful mechanism (also referred to as an incentive compatible
IC or dominant strategy incentive compatible DSIC mechanism) is one
that results in truthful bidding being a dominant strategy. And now here is
the issue that began algorithmic game theory. (See the seminal papers by
Nisan and Ronen, and by Lehmann, O’Callahan and Shoham.)

If we could compute an optimal allocation (i.e. one optimizing social
welfare), we could then rely upon Vickrey-Clarke-Groves (VCG) pricing
(i.e. charge each agent the loss of social welfare caused by their presense
in an optimal allocation) to obtain a truthful mechanism.

But the NP-hardness of this problem precludes an optimal allocation (at
least in the worst case, if we assume P 6= NP) and hence we would have to
rely on some approximation algorithm.

But VCG pricing does not always result in a truthful mechanism for
approximation algorithms!
VCG mechanism = optimal allocation + VCG pricing.
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The Vickrey auction for a single item

In a sealed auction for a single item, the auctioneer (the mechanism, the
seller) receives bids (b1, . . . , bn) from (say) n bidders who have private
values (v1, . . . , vn) for the item. Notably, the bids may not be equal to the
values and the mechanism may not know anything about the true values
(or it might know a prior distribution on these values).

Based on these bids, the mechanism allocates the item (i.e. determines
the winner) and sets a price for the winner to pay. If the mechanism only
wishes to maximize social welfare, what should it do?

For example, suppose I am interested in selling my legally unlocked 128GB
iPhone 6. I am assuming you know what it is worth to you! I will
announce my allocation and pricing algorithm and you will then bid. My
goal is to make sure that the person who values it the most will be the
winner of my auction. (I may also believe that this person will bid
reasonably and I will get some revenue.) What should I do?
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The Vickrey auction continued: selling my iPhone 6

1 I will allocate the phone to the person with the highest bid (ignore
tying bids) and charge that person their bid. This is the first price
auction.

2 I will allocate the phone to the person with the highest bid (ignore
tying bids) and charge that person the second highest bid. This is the
Vickrey second price auction.

How many people bid their true value for the first mechanism? If not,
what fraction of the true value did you bid?

How many people bid their true value for the second mechanism? If not
what fraction of the true value did you bid?
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The second price auction is truthful

The Vickrey auction is truthful

Bidding truthfully is a dominant strategy (no matter how the other buyers
bid) and reasonably assuming everyone bids truthfully, social welfare is
maximized.

There is an obvious issue with both the first and second price auctions in
that the auctioneer/seller may value the item more than any of the buyers.

This is dealt with by the mechanism announcing a reserve price so that no
bid will be accepted that is under the reserve price.
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The English (ascending price) auction

While the second price auction may seem a little strange at first, it is in
some sense equivalent to the familar English ascending price auction.

In the English auction, the auctioneer starts with a price (i.e. a reserve
price) and then continues to ask who wants to raise the bid? The final
(highest) bid wins.

Suppose the auctioneer always just asks if there is anyone who wants to
raise the current bid by some small ε. Then this ascending price auction is
essentially producing the same outcome (assuming buyers do not change
their valuation given other bids) in terms of who wins the item and what is
paid. These are referred to as two different implementations of the same
outcome.

But how do these two implementations differ?
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Revenue equivalence

We have seen (if my iPhone 6 sale worked as it should have) that the
buyers strategies are different for 1st price and 2nd price auctions. Which
mechanism is best for me (the seller) in terms of my revenue?

Surpising fact: If we assume say that all bidders are drawing their values
from same uniform distribution (say U[0, h]) then my expected revenue is
the same!

Even more surprising: This revenue equivalence holds much more
generally. There are some technical conditions involved but here is the
informal statement in Wikipedia.

Revenue equivalence is a concept in auction theory that states that given
certain conditions, any mechanism that results in the same outcomes (i.e.
allocates items to the same bidders) also has the same expected revenue.

Note: I would replace “concept” by “result” (i.e. a theorem)

29 / 1



Revenue equivalence

We have seen (if my iPhone 6 sale worked as it should have) that the
buyers strategies are different for 1st price and 2nd price auctions. Which
mechanism is best for me (the seller) in terms of my revenue?

Surpising fact: If we assume say that all bidders are drawing their values
from same uniform distribution (say U[0, h]) then my expected revenue is
the same!

Even more surprising: This revenue equivalence holds much more
generally. There are some technical conditions involved but here is the
informal statement in Wikipedia.

Revenue equivalence is a concept in auction theory that states that given
certain conditions, any mechanism that results in the same outcomes (i.e.
allocates items to the same bidders) also has the same expected revenue.

Note: I would replace “concept” by “result” (i.e. a theorem)

29 / 1



Revenue equivalence

We have seen (if my iPhone 6 sale worked as it should have) that the
buyers strategies are different for 1st price and 2nd price auctions. Which
mechanism is best for me (the seller) in terms of my revenue?

Surpising fact: If we assume say that all bidders are drawing their values
from same uniform distribution (say U[0, h]) then my expected revenue is
the same!

Even more surprising: This revenue equivalence holds much more
generally. There are some technical conditions involved but here is the
informal statement in Wikipedia.

Revenue equivalence is a concept in auction theory that states that given
certain conditions, any mechanism that results in the same outcomes (i.e.
allocates items to the same bidders) also has the same expected revenue.

Note: I would replace “concept” by “result” (i.e. a theorem)

29 / 1



Revenue equivalence

We have seen (if my iPhone 6 sale worked as it should have) that the
buyers strategies are different for 1st price and 2nd price auctions. Which
mechanism is best for me (the seller) in terms of my revenue?

Surpising fact: If we assume say that all bidders are drawing their values
from same uniform distribution (say U[0, h]) then my expected revenue is
the same!

Even more surprising: This revenue equivalence holds much more
generally. There are some technical conditions involved but here is the
informal statement in Wikipedia.

Revenue equivalence is a concept in auction theory that states that given
certain conditions, any mechanism that results in the same outcomes (i.e.
allocates items to the same bidders) also has the same expected revenue.

Note: I would replace “concept” by “result” (i.e. a theorem)

29 / 1



Revenue equivalence

We have seen (if my iPhone 6 sale worked as it should have) that the
buyers strategies are different for 1st price and 2nd price auctions. Which
mechanism is best for me (the seller) in terms of my revenue?

Surpising fact: If we assume say that all bidders are drawing their values
from same uniform distribution (say U[0, h]) then my expected revenue is
the same!

Even more surprising: This revenue equivalence holds much more
generally. There are some technical conditions involved but here is the
informal statement in Wikipedia.

Revenue equivalence is a concept in auction theory that states that given
certain conditions, any mechanism that results in the same outcomes (i.e.
allocates items to the same bidders) also has the same expected revenue.

Note: I would replace “concept” by “result” (i.e. a theorem)

29 / 1



Cake cutting and fair division
Consider the problem of cutting (i.e. partitioning) a cake into some
number n disjoint “pieces”, say A1, . . . ,An. We want to do this in a “fair
way”. By definition, we view our cake as being completely divisible. For
our more mathematical/computational purpose, we can think of the cake
as the unit interval [0, 1]

198 11. FAIR DIVISION

The classical method for dividing a cake fairly between two people is to have
one cut and the other choose. This method ensures that each player can get half
the cake according to his preferences, e.g., a player who loves icing most will take
care to divide the icing equally between the two pieces.

Figure 11.2. This figure shows a possible way to cut a cake into 5
pieces. The ith piece is Bi = [

Pi�1
k=1 xk,

Pi
k=1 xk). If the ith piece goes

to player j, then his value for this piece is µj(Bi).

To divide a cake between more than two players, we first model the cake as
the unit interval, and assume that for each i 2 {1, . . . , n}, there is a distribution
function Fi(x) representing player i’s value for the interval [0, x]. (See Figure 11.2
for a possible partition of the cake.) We assume these functions are continuous. Let
µi(A) be the value player i assigns to the set A ⇢ [0, 1], in particular µi([a, b]) =
Fi(b) � Fi(a). We assume that µi is a probability measure.

Definition 11.1.1. A partition A1, . . . , An of the unit interval is called a fair
division1 if µi(Ai) � 1/n. A crucial issue is which sets are allowed in the partition.
For now, we assume that each Ai is an interval.

Remark. The assumption that Fi is continuous is key, since a discontinuity
would represent an atom in the cake, and might preclude fair division.

Moving-knife algorithm for fair division of a cake among n people

• Move a knife continuously over the cake from left to right
until some player yells ”Stop!”

• Give that player the piece of cake to the left of the knife.
• Iterate with the other n�1 players and the remaining cake.

Definition 11.1.2. The safe strategy for a player i is defined inductively as
follows. If n = 1, take the whole cake. Otherwise, in the first round, i should yell
”stop” as soon as a 1/n portion of the cake is reached according to his measure.
If someone else yells first, player i employs the safe strategy in the (n � 1)-person
game on the remaining cake.

Lemma 11.1.3. Any player who plays the safe strategy is guaranteed to get a
piece of cake that is worth at least 1/n of their value for the entire cake.

Proof. Any player i who plays the safe strategy either receives a piece of cake
worth 1/n of their value in the first round, or has value at least (n � 1)/n for the
remaining cake. In the latter case, by induction, i receives at least 1/(n � 1) of
his value for the remaining cake and hence at least 1/n of his value for the whole
cake. ⇤

1 This is also known as proportional.

Figure: Cutting a “cake” into 5 contiguous pieces

So what is a “piece” and what is “fair”? Maybe I only like certain parts of
the cake while others like other parts? A “piece” is a finite collection of
disjoint intervals. Pieces need not be contiguous.
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Cake cutting definitions

We will assume that each agent (also called players) i has a valuation
function vi : [0, 1]→ R≥0 that can be thought of as a cummulative
distribution function. Namely,

1 For all X ⊆ [0, 1], vi (X ) ≥ 0

2 For all X ,Y ⊆ [0, 1] : X ∩ Y = ∅, vi (X ∪ Y ) = vi (X ) + vi (Y )

3 For all x ∈ [0, 1], vi (x , x) = 0

4 vi ([0, 1]) = 1

There are two natural definitions of “fair division”:

A division A1, . . . ,An is a proportional division if vi (Ai ) ≥ 1/n for all
i . Note: This is called “fair” in the KP text but I prefer to use “fair”
as a more intuitive concept.

A division A1, . . . ,An is an envy-free division if vi (Ai ) ≥ vi (Aj) for all
i , j . iThat is, i does not envy j ’s allocation.

31 / 1



Proportional fairness vs envy-free fairness

The main concern is fairness. It turns out that envy-freeness is a more
desireable property.
We need only consider n ≥ 2 agents since n = 1 is trivial.

Every envy-free division is a proportional division

Proof: For any i , there must be some Sj such that vi (Sj) ≥ 1/n. Then
since the division is envy-free, vi (Ai ) ≥ vi (Aj) ≥ 1/n.

However, for n ≥ 3, the converse is not necessarily true. Consider the
following valuation profile:
v1([0, 1/3]) = 1/3, v1([1/3, 2/3]) = 2/3, v1([2/3, 1]) = 0; v2, v3 have
uniform valuations.
The division A1 = [0, 1/3),A2 = [1/3, 2/3),A3 = [2/3, 1] is proprtional
since everyone is receiving a 1/3 valuation but agent 1 envies the
allocation to agent 2.
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What other properties do we want in a fair cake
cutting algorithm?

The following properties are all desireable but maybe not all are
achieveable.

The allocated pieces are contiguous.

The protocol is truthful.

The protocol is (approximately) socially optimal.

The “complexity” of the cake-cutting algorithm is (approximately)
optimal amongst envy-free or proportional divisions.

We need to define what measures of complexity we might want to
consider. But before we do so, let us consider a natural algorithm for
n = 2 agents. We will then see that the situation for n ≥ 3 agent becomes
more complicated.
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The “Cut and Choose” algorithm for n = 2 agents
The following is a protocol (i.e. algorithm) you may have used and can be
found in the Old Testement (see chapter notes):

The cut and choose algorithm

1 Agent 1 cuts the “cake” [0, 1] into two equal parts according to his
valuation; that is, v1(A1) = v1(A2) = 1/2.

2 Agent 2 chooses between A1 and A2.

What properties are satisfied by cut and choose?

Envy-free? Yes. Agent 2 clearly gets the best of A1 and A2 and is
hence envy-free; agent 1 chose the partition so as to have equal value
so he is also envy-free. Division must then be proportional.
Contiguous? Yes agent 1, can choose to “query” which location x
satisfies v1[0, x) = v1(x , 1]
Complexity? One cut which is clearly optimal. What else might we
measure?
Truthful? To be more precise “ex-post IC”?
Socially optimal?
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Complexity measures: a CS perspective
Lets look a little closer at the complexity of cut and choose. As we said,
the number of cuts was optimal. More generally, for any number n of
agents, the minimum possible number of cuts is n − 1 and this is
achieveable iff the division is contiguous.

In the cut and choose protocol, besides the number of cuts, there were two
other queries that can be considered as possible meausres of complexity.
Agent 1 asked where to cut so as to obtain a piece of value 1/2 and agent
2 asked for his value of a piece. (Agent 2 only had to ask about one piece
as that determined the value of both A1 and A2.).

Here is the Robertson and Web [1998] complexity model:

1 Agent 1 used a demand query; namely given some value v and some
current piece X (i.e. X is an interval in [0, 1]), the agent i asked
where to cut the piece X so as to obtain a piece Y (i.e. Y is a
subinterval of X ) such that vi (Y ) = v .

2 Agent 2 used a value query; namely, given a piece X , the agent asked
for his value on this piece.
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The moving knife protocol: A proportional division
for any number of agents

The moving knife protocol (due to Dubins and Spanier [1961]) is the
following conceptually simple algorithm:

Moving knife protocol

Initialize: Let N be the set of n agents; X := [0, 1];
start the knife at the leftmost location 0.

While |N| > 1
Move the knife to the right until some agent i ∈ N yells “STOP”
having observed value vi (Y ) = 1/|N| for the piece Y to the left
of the knife
Cut the “cake” and give agent i piece Y ; N := N \ {i}; X := X \ Y

End While The one remaining player gets the remaining piece.

Equivalently, the KP text presents the algorithm recursively.
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Properties of the moving knife protocol

The following properties are easy to verify

The allocation is a contiguous division using the minimum n − 1 cuts.

The division is fair. Why?

Note that when the first cut is made, any
one of the remaining n − 1 agents (say agent j) has value for what
remains vj(X \ Y ) ≥ 1− 1

n = n−1
n which has to be shared but now

shared with only n − 1 players. Hence (by induction) every agent gets
a share with value at least 1

n .

More precisely, the first n− 1 players to yell STOP get exactly a value
of 1

n and the last player obtains a value at least 1
n .

The division is not necessarily envy-free for n > 2 agents as shown in
figure 11.3 of the KP text (see next slide). What agent is guaranteed
to not be envious?
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The negative aspects of the moving knife protocol
As we just stated, the division may not be envy-free.

11.1. CAKE CUTTING 199

0
0
0 0

12__ 12__

13__ 23__

1

value to player I

value to player II

value to player III

The Cake:

Figure 11.3. This figure shows an example of how the Moving-knife
algorithm might evolve with 3 players. The knife moves from left to
right. Player I takes the first piece, then II, then III. In the end, player
I is envious of player III.

While this cake-cutting algorithm guarantees a fair division if all participants
play the safe strategy, it is not envy-free. It could be, when all is said and done,
that some player would prefer the piece someone else got. See Figure 11.3 for an
example.

11.1.1. Cake cutting via Sperner’s Lemma. Let µ1, . . . , µn and F1, . . . , Fn

be as above. In this section, we will show that there is a partition of the cake [0, 1]
into n intervals that is envy-free, and hence fair, under the following assumption.

Assumption 11.1.4. Each of the n people prefers any piece of cake to no piece,
i.e. µi(A) > 0 for all i and any interval A 6= ;.

We start by presenting an algorithm that constructs an ✏-envy-free partition.

Definition 11.1.5. A partition A1, . . . , An is ✏-envy-free if for all i, j we have
µi(Aj)  µi(Ai) + ✏.

This means that player i, who was assigned interval Ai, does not prefer any
other piece by more than ✏.

11.1.1.1. The construction. Let ei be the i-th standard vector. Each point
(x1, . . . , xn) in the simplex �(e1, e2, . . . , en) describes a partition of the cake (see
Figure 11.2) where Ai is the piece of cake allocated to player i. By Lemma 5.4.5
and Corollary 5.4.7, for any simplex � and ⌘ > 0, there is a subdivision � for which
all simplices in � have diameter less than ⌘, and for which there is a proper-coloring
(that is, any two vertices in the same simplex �1 2 � are assigned di↵erent colors.)

Apply this subdivision and coloring to �(e1, . . . , en). Then there is a proper
coloring with colors {c1, . . . , cn} of the vertices of �. If the vertex v has color ci,
we will say that player i owns that vertex. See Figure 11.4.

Next, construct a Sperner labeling `(·) of the vertices in the subdivision as fol-

lows: Given x = (x1, . . . , xn) a vertex in �, define Bi = Bi(x) = [
Pi�1

k=1 xk,
Pi

k=1 xk].
(Again, see Figure 11.2.) If x is owned by player j, then `(x) = k if µj(Bk) is maxi-
mal among µj(B1), . . . , µj(Bn). In other words, `(x) = k if Bk is player j’s favorite
piece among the pieces defined by x. The fact that `(·) is a valid Sperner labeling
follows from Assumption 11.1.4. See Figure 11.5.

Finally, we apply Sperner’s lemma, from which we conclude that there is a fully
labelled simplex in �.

Figure: an envious division

In addition to not being envy-free, the moving knife requires an active
referee who is slowly moving the knife. In other words this is not a discrete
algorithm with a finite number of queries of the two types we have
described. Each agent would need to be continuously asking for the value
of the piece to the left of the knife. Evan and Paz [1984] adapted the
moving knife so that it is a discrete algorithm in the Robertson and Web
model using O(n log n) queries.
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The continuing story for cake cutting for the n > 2
agents

All of the following non-trivial cake cutting protocols result in
non-contiguous but discrete computation divisions. (Note: for n > 2, it is
not possible in general to have an envy-free continuous divisions.)

For n = 3, Steinhaus [1943] gave a protocol that ylelds a proportional
division using at most 3 cuts. This protocol is not envy-free.

For n = 3, Selfridge and Conway [1960] gave a envy-free protocol
with at most 5 cuts.

For n = 4, Brams and Taylor [1995] gave an envy-free protocol with
an unbounded number of cuts. That is, for any instance this
algorithm uses some finite number of cuts and queries but that
number depends on the instance; that is, for all c, there is an instance
requiring at least c cuts.

Su [1999] gave a non constructive proof that there exist envy-free
divisions for all n.
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The latest developments in this continuing story of
cake cutting

After 20 more year, Aziz ans MacKenzie [2016, spring] gave an
envy-free protocol for n = 4 agents with a bounded number of cuts.

In the latest development, the same Aziz and McKenzie [2016, fall]
gave an envy-free protocol for all n using a bounded number of cuts
and queries. However, so far the bound on the number of cuts is
astronomically infeasible.

Namely, the current bound is :

nn
nn

n

.
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Some impossibility results

Edmonds and Pruhs [2006]: Any proportional cake cutting algorithm
require Ω(n log n) queries in the Robertson and Web modeli matching
(asymptotically) the Evan and Paz discrete version of the moving
knife.

Stromquist [2008]: For n ≥ 3, no envy free algorithm can produce a
contiguous allocation.

Proccacia [2009]: Any envy free algorithm requires Ω(n2) queries in
the Robertson and Web model.

Caragiannis et al [2009]: The price of proportionality is Θ(
√
n) and

the price of envy-freeness is at least Ω(
√
n) and at worst O(n). These

concepts are in analogy with the price of anarchy and measure how
much fairness costs relative to an optimal allocation in terms of social
welfare.

See Proccacia [2016] for a recent survey of such complexity results.
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The Selfridge and Conway envy-free protocol for
n = 3
For a sense of how involved cake cutting procedures can be (even when
the number of cuts is small), here is the Selfridge and Conway protocol
(using CMU lecture notes by Ariel Proccacia).

Stage 0

I 0.1 Agent 1 cuts the cake into three equal parts according to v1
I 0.2 Agent 2 “trims” his most valuable piece (according to v2) of these

three pieces so that the trimmed piece Z has the same value as the
second most valuable piece M. Lets say that Y is what has been
trimmed off and X is the what remains of the entire cake after Y is
removed. Note: Z and M are each one of the three pieces in X .

Stage 1: Dividing X

I 1.1 Agent 3 chooses a piece of X
I 1.2 If agent 3 chooses the trimmed piece Z then agent 2 chooses M.

Otherwise, if agent 3 chooses L one of the other two pieces in X , then
agent 2 chooses Z .

I 1.3 Agent 1 chooses the remaining piece of X

42 / 1



The last part of the n = 3 protocol; dividing the
trimmed off part Y

Lets say that agent i ∈ {2, 3} chose Z and agent j ∈ {2, 3} chose L

Stage 2: Dividing the trimmed off piece Y
I 2.1 Agent j divides Y into 3 equal pieces according to vj .
I 2.2 These three pieces of Y are allocated in the following order: Agent

i chooses first, then agent 1, and then agent j .

It is easy to see that the protocol uses 5 cuts if Y 6= ∅ and 2 cuts if
Y = ∅.

Proving envy-freeness is done by proving that each agent is envy free with
respect to their piece in X and with respect to their piece in Y .
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Completing the argument for envy-freeness

For the envy-freeness of the division of X , agent 3 chooses first so she is
envy-free. Agent 2 gets one of his best two equal valued pieces and agent
1 gets a piece other than Z which has the same value to her.

For the envy-freeness of the division of Y , agent i chooses first so he is
envy-free. Agent 1 chooses before agent j so she is not envious of him.
Agent 1 is also not envious of agent i because i ’s share of both X and Y
is at most 1/3 with respect to v1. Finally, agent j is not envious about his
share of Y since he divided Y into three equally valued pieces.
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