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Announcements and todays agenda

Announcements

1 Assignment 2 was due today. I just saw some messages from Friday
asking for some clarifications. I am pushiong back the due date to
Wed. Please submit to me or Lalla.

2 I have posted the first question for Assignment 3. I am planning to
post more questions this week.

Todays agenda

1 By “popular demand” (i.e., one person asked me), a discussion of
MapReduce

2 Introduction to spectral methods and spectral graph theory
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A discussion of MapReduce

I was asked at the end of the last class if I could say more about
MapReduce models and algorithms. This is a topic of current interest,
both in terms of its current practical application and popularity as a
parallel programming paradigm, and as well as having some theoretical
interest in the algorithm design and analysis community.

As stated last tine, the paradigm is implemented in the open source
Hadoop. I would say that the initial and perhaps still main usage is with
respect to data base applications.

The main advantage of MapReduce algorithms is that the programming
environment is easy to understand.

Since this is an area that I have not even remotely worked in (or lectured
on), I am relying heavily on a few sources.
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A few papers on MapReduce

Zadeh abd Goel [2012] presnt a number of MapReduce algorithms to
compute pairwise similarities (defined in different ways) between high
dimensional sparse vectors (e.g. documents). These examples are
relatively easy but interesting (and practical) examples of
MapReducer.

A high level CACM introduction by Ullman [2012]

A more technical VLDB article by Afrati et al [2013] that presents a
precise model in which both algorithms and limitations (.e. tradeoff
results) are proved.

I also mentioned a paper last class by Bahmani, Kumar and [2012]
that converts a streaming algorithm to a MapReduce algorithm for
the densest subgraph probelm

There is a followup paper by Bahmani. Goel and Munagala [2014] on
the densest subgraph problem focused entirely on MapReduce.

There are also papers with precise models by Karloff et al [2010] and
Beame et al [2013] that also feature algorithms and limitations.
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The Map Reduce paradigm

As mentioned in last weeks lecture, MapReduce algorithms do
computation on a large number of servers interconnected by a fast
network. (There is no shared memory.) Each server performs
computations (on the data they hold) and then exchange data.
Map Reduce algorithms operate on (key,value) pairs in rounds (also called
phases), each round consisting of three stages:

Map: Transforms a (key,value) into one or several new (key,value)
pairs.

Shuffle: All the values associated with a given key are sent to the
same (perhaps virtual) machine. This aspect is carried out
automatically by the system and thereby allows the algorithm designer
to avoid what can be complex implementation issues.

Reduce: All values associated with a given key get batched into a
multiset of (key,value) pairs
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Measures of MapReduce complexity

Following the Goel and Munagala [2012] definitions of complexity measures
for MapReduce computations, Zadeh and Goel study algorithms for
similarity focusing on two hgih level complexity measures in a MapReduce
round; namely shuffle-size and “reduce-key-complexity” defined as follows:

Shuffle-size is the maximum number of outputs (i.e. the the number
of (key,value) pairs) from a mapper.

Reduce-key-complexity is the maximum time needed for a reducer to
produce its output.

These measure depend on the algorithm but not on the details of the
implementation (e.g., how many machines, number of mappers/reducers).

In general there will be a tradeoff between these measures and more
generally, a tradeoff between the complesxity of a round and the number
of rounds.
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Cosine similarity

We consider one round algorithms for computing the cosine similarity
between all pairs of high dimensional but sparse vectors. Here we are
thinking of a document (resp. a twitter user) as a bit vector where each
component indicates whether of not a given word is present in this
document (resp. which other users a given user follows).

For the twitter example, they take as typical values: N = 109 as the
number of all twitter users, D = 107 as the number of users being
compared, and L = 1000, as the maximum number of other users being
followed by any given user.

Alternatively, we can let N = 109 as the number of documents, D = 107

as the size of a dictionary of words, and L = 20 as the maximum number
of words in say a tweet (rounding down 148 characters for simplicity).
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Cosine similarity continued
Let #(wi ,wj) denote the number of co-occurrences of wi and wj (resp.
#wi is the number of occurrences of wi ) in the collection of D
documents/tweets.

Definition: The cosine similarity of (wi ,wj) is defined as
#(wi ,wj )√
(#wi

√
(#wj

.

In a naive implementation, the shuffle-size would be N · L2 which is
prohibitively large (i.e., 400 Billion for the example with L = 20).

That is, as presented in Zadeh and Goel,

Naive Mapper(t)

For all pairs (w1,w2) in document t
emit((w1,w2, 1))

EndFor

Naive Reducer((w1,w2), 〈r1, . . . , rR〉

s =
∑R

k=1 rk % We have ri = 1 for all k
Output (for a pair (wi ,wj)) = s√

(#wi

√
(#wj 8 / 1



A more practical randomized MapReduce for cosine
similarity
In practice, one would only be interested in similarities that exceed a
certain threshold ε < 1. In order to have the suffle size depend on D and
L, we sample each occurence of a pair (w1,w2) with an appropriate
probability. Choosing R = log D/ε, then for the stated D = 107 and ε = .1
, we have R ≈ 100.

Randomized Mapper(t)

For all pairs (w1,w2) in document t
emit((w1,w2, 1)) with probability R√

(#wi

√
(#wj

EndFor

Corresponding Reducer((w1,w2), 〈r1, . . . , rR〉

s =
∑R

k=1 rk % We have ri = 1 for all k
Output (for a pair (wi ,wj) = s

R
√

(#wi

√
(#wj
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Conclusion for the randomized MaReduce for cosine
similarity

The Zadeh and Goel paper proves the following result:

Theorem: Ramdomized MapReduce for cosine similarity

The output is an estimator for the cosine similarity

It is “accurate with high probability” (i.e. we can obtain an (ε, δ)
result by setting the probability to O(R) ).

The shuffle size is O(DL log(D)/ε)

The Reduce-key-complexity is O(log D/ε)

Note that to output highly similar pairs, there can be O(DL) such pairs so
that these bound are within a O(log D) factor of optimality.
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Approximating the densest subgraph problem in
MapReduce
The densest subgraph problem is defined as follows:

Given a graph G = (V ,E ), find a subset V ′ ⊆ V so as to maximize
|e:u,v∈V ′|
|V ′| ; that is, to maximize the density (or equivalently the average

degree) in a subgraph of G .

There is also a directed graph version of this problem. We will consider
the undirected case.

The densest subgraph problems can be solved in polynomial time by a flow
based algorithm as described in Lawler’s 1976 text and improved in Gallo
et al [1989]. There is also an LP duality based optimal method given in
Charikar [2000] that is the starting point for the MapReduce (1 + ε)
approximation algorithm due to Bahmani, Goel and Munagala [2014].

The (1 + ε) approximation follows a MapReduce 2(1 + ε) approximation by
Bahmani, Kumar and Vassilvitskii [2012] based on the Charikar greedy
2-approximation. (Note that these papers use approximation ratios ≥ 1.)
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Some comments on the densest subgraph problem

One immediate application is that the densest subgraph can be used to
identify a “community” in the web or a social network. There are other
applications as well in biological networks.

The k-densest subgraph problem asks for the densest subgraph V ′ of size
|V ′| = k. As far as I know the best approximation known for the k-densest

subgraph problem is O(n
1
3
+δ).

Obviously if one can (approximately) solve the k-densest subgraph
problem then one can (approximately) solve the ”densest subgraph with at
least (resp. at most) k vertices. But the converse is not apparentlly true.
Andersen and Chellapilla [2009] show the following:

There is a 3-approximation algorithm for the “at least k vertices”
variant.

If there is a γ approximatin for the “at most k vertices” variant then

there is an γ2

8 approximation for the k-densest subgraph problem
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The Charikar LP duality based method
We will use the notation and sketch the development in Bahmani et al
[2014]. In addition to the new MapReduce approximation ratio, this
development is interesting as it nicely integrates the Plotkin, Shmoys and
Tardos [1991] framework for approximating fractional packing and
covering problems which in turn is desribed in Arora et al [2012] as an
application of the multiplicative weights paradigm.

The Charikar LP is as follows:

Maximize
∑

e ye subject to
ye ≤ xv ∀e ∈ E , e incident on v ∈ V∑

v xv ≤ 1 ∀v ∈ V
xv , ye ≥ 0 ∀v ∈ V , e ∈ E

Charikar shows

For any S ⊆ V , the value of the LP v is at least as large as the value
of the largest densest subgraph.
Given a feasible solution of the LP with value v , one can efficiently
construct an S ⊆ V such that the value of the largest densest
subgraph is at least v . That is, the LP can be optimally “rounded”.
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The dual of the Charikar LP

Bahmani et al [2014] do not using the Charikar rounding but instead
consider the dual of the LP (formulated as a decision problem) which is a
maximum concurrent multi-commodity flow (MCMF) problem::

Minimize D subject to
αeu + αev ≥ 1 ∀e = (u, v) ∈ E∑

e:e incident on v αev ≤ D ∀v ∈ V
αev ≥ 0 ∀e ∈ E , v ∈ V

By duality, D is at least the value of the optimal primal LP (= the optimal
value of the densest subgraph).
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Outline of the Bahmani et al algorithm
Basdd on the algorithm of Young [1995], the Arora et al multiplicative
weights solving of the decision MCMF is framed in terms of the following
linear covering problem subject to a convex set:

The Covering Problem

Does there exist an x ∈ P such that Ax ≥ 1 where A is an r × s matrix
and P is convex set in Rs : Ax ≥ 0 for all x ∈ P.

It is assume that there is an “oracle” for maximizing a linear combination
of the linear constraints. The running time of the algorithm is measured in
terms of width ρ of the problem where ρ = maxi maxx∈P aix.

For the MCMF decision problem, the goal is to decide if the linear
constraints αeu + αev ≥ 1 can be satisifed subject to the convex set P(D)
constraint:∑

e:e incident on v αev ≤ D ∀v ∈ V
αev ≥ 0 ∀e ∈ E , v ∈ V

For the densest subgraph problem, the width corresponds to the maximum
degree dmax in the input graph G .
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Outline of the Bahmani et al algorithm continued

In solving the densest subgraph problem using this framework, the number
of multiplicative weigths iterations (corresonding to rounds in MapReduce)
will depend on the width.

Bahmani et al introduce a width modulation technique whereby extra
capacity constraints αev ≤ q (∀e ∈ E , v ∈ V ) are added to the convex set
constraints which reduces the width to 2q.

As they explain, there is a tradeoff between the running time (rounds)
where small width helps and having an efficient rounding scheme where
large witdh helps.

The result of this non trivial development is a MapReduce algorithm
satisfying O(log n/ε) rounds, with shuffle complexity O(|E |) and
reduce-size-complexity O(dmax) in each round.
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Some other MapReduce algorithms
As previously mentioned, for the densest subgraph problem, Bahmani et al
[2012] adapted the Charikar “reverse greedy” algorithm to derive an
O(log n) round MapReduce algorithm with approximation 2(1 + ε).

It may seem inconsistent that greedy style algorithms (which seem
inherently sequential) can be utilized to derive MapReduce algorithms with
a relatively small number of passes.

But, in fact, the Bahmani et al algorithm is representative of a number of
such algorithms. See Chierichetti et al [2010] for Max-Cover, Lattanzi et al
[2011] for vertex cover and maximal matching problems, and Ene et al
[2011] for the k-center problem.

Kumar et al [2013] provide a unifying idea in how natural greedy
algorithms can be modified so as to be implemented in the Streaming and
MapReduce models. As they explain, the basic idea is to be able to
identify a large subset of data items that can be removed in a round
without significantly changing the desired objective value.
How would you modify the Charikar reverse greedy algorithm?
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A brief introduction to spectral methods

Like other topics in the course, spectral methods and in particular
spectral graph theory (and, in particular, spectral graph algorithms) is
really a topic in itself.

Spectral methods are becoming more and more important with
applications to many areas of research.

When we say spectral method, we mean algorithmic methods relying
on the eigenvalues and eigenvectors of a matrix. In particular, we will
just highlight some results relating to matrices coming from
undirected graphs.

One of the most active and influential researchers in this area is Dan
Spielman. His Fall, 2015 course notes on spectral graoh theory can be
found at http://www.cs.yale.edu/homes/spielman/561/. I have
posted a tutorial by Dan Spielman on the course web page.

I will just briefly introduce some terminology and give a glimpse of
some applications of spectral graph theory. Spielman’s course notes
and tutorial will, of course, provide many further applications.

18 / 1



Spectral graph theory

For undirected graphs, the adjacency matrix A(G ) of a graph G is a
real symmetric matrix.

A non-zero (column) vector x is an eigenvector of A with eigenvalue
λ if Ax = λx .

The spectrum of A or a graph G refers to the set of eigenvalues of A
(resp A(G )).

When A is a real symmetric matrix, then all the eigenvalues are real
and there is an orthonormal basis of Rn consisting the eigenvectors of
A. That is, the eigenvectors are orthogonal to each other and each
normalized to length = 1.

The question is what useful information about a graph can the
spectrum provide?
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The Laplacian

In spectral graph theory, it is often better to consider the Laplacian of
a graph which is defined as L(G ) = D(G )− A(G ) where D(G ) is the
diagonal matrix whose entries are the degrees of the vertices.

In particular if G were d regular, then any eigenvector of A(G ) with
eigenvalue λ is an eigenvector of L(G ) with eigenvalue d − λ and vice
versa.

The nice property of the Laplacian L(G ) is that it is a positive
semi-definite matrix which implies that all its eigenvalues are
non-negative.

Furthermore, G is connected if and only if λ = 0 is an eigenvalue of
L(G ) with multiplicity 1. More generally, G has k connected
components iff 0 is an eigenvalue of multiplicity k .

Why is this interesting? Ordering so that λ1 ≤ λ2 . . . ≤ λn, we can
think of the two smallest eigenvalues being close iff the graph is
“close” to being disconnected iff there is a “sparse cut”.
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Sparse cuts

Recall that a cut in a graph G = (V ,E ) is a partition of the vertices
V into S and V \ S (or equivalently the cut set of edges , that is,
cut(S) = {e = (u, v)|u ∈ S , v ∈ V \ S}).

We previously discussed min cuts in a graph and how they can be
optimally computed using the the max flow-min cut theorem and
(say) a Ford Fulkerson based algorithm. (For edge weighted graphs,
Ford Fulkerson computes a cut of minimum weight.)

Our goal now is to produce “balanced sparse cuts”. That is, we want
to view the size of a cut relative to the sizes of S and V \ S . Such
balanced cuts have applications to algorithms that work by
decomposing a graph into roughly equal parts.

The conductance φ(S) of a set S is defined as:
|cut(S)|

min{vol(S),vol(V \S)} where vol(S) =
∑

u∈S degree(u).
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Conductance

Sometimes conductance is defined as |cut(S)
|S |·|V \S| . These quantities are

within a factor of 2.

The conductance φ(G ) of a graph is the minS:|S |≤n/2 φ(S).
Computing the conductance of a graph is a well studied formulation
of the sparsest cut problem. It is NP-hard and the best known
approximation for about 15 years was the Leighton Rao O(log |V |) for
about 15 years and then improved by Arora, Leighhton and Rao to
O(

√
log |V |).
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Cheeger’s Inequality

Cheeger’s inequality has been called the most important result in spectral
graph theory.

To state this result it is useful to consider the following normalized
adjacency and Laplacian matrices:
A′ = D−1/2AD−1/2 and L′ = D−1/2LD−1/2

Here D−1/2 is the diagonal matrix with diagonal entries
di ,i = degree(vi )

−1/2

Letting {αi} (resp. λ′i ) denote the eigenvalues of A′ (resp. L′), it
follows that
1 ≥ α1 ≥ α2 . . . ≥ αn ≥ −1 and 0 = λ′1 ≤ λ′2 . . . ≤ λ′n ≤ 2.
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Cheeger’s inequality continued

The spectral gap is the difference bewteen α1 and α2 (or between λ′1
and λ′2).

The spectral gap is closely related to conductance as well as the
graph expansion properties and random walk properties.

Cheeger’s inequality

λ′2/2 ≤ φ(G ) ≤
√

2λ′2

The spectral gap is also closely related to the important concept of
expander graphs.

Intuitively, expander graphs G = (V ,E ) satisfy the property that for
all (not too large) subsets S ⊂ V , the size of the neighbourhood of S
is sufficiently larger than the size of S .
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Expander graphs and applications

Expander graphs have many applications (e.g. in coding theory,
random walks, error probability amplification and derandomization).

There are various combinatorial parameterized definitions and we will
soon present two specific definitions.

Expansion is (with high probability) a property of random graphs and
in a sense expander graphs are often surrogates for random graphs.

There is a considerable amount of research on the construction of
explicitly defined expander graphs of small degree.

We will see that, algebraically, expander graphs can also be
characterized as graphs having a suitable spectral gap, and also
equivalently as graphs having rapid (i.e. O(log n)) mixing time to
equilibrium in a random walk.

25 / 1



Two specific combinatorial expander definitions

Two expander definitions that occur are the following:

An (n, d , c)) node expander

A (n, d , c) node expander is an n node d-regular biparitite multi-graph
G = (X ,Y ,E ) with |X | = |Y | = n/2 such that any subset S ⊆ X satsifies

—Neighbourhood of S | ≥ (1 + c(1− 2|S |
n )|S |.

An (n, d , c)) edge expander

(N, d , c) edge expander is an n node, d-regular multi-graph G = (V ,E )
such that any subset S ⊆ V with |S | ≤ n/2 has at least cd |S | edges
between S and V \ S .

In general, one wants small degree d and a constant c > 0.

Most random d-regular bipartite garphs are such expanders but we
usually need explicitly constructed exapnders (which are known).
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Expanders and the spectral gap

Given this type of edge expander graph, we have the following seminal
relation with the spectral gap (due to Noga Alon). Here we let {λi} be
the eigenvalues of the adjacency matrix A(G ).

Relating expansion and spectral gap

If G is a (n, d , c) edge expander then λ1 = d , then
1
2(1− λ2/d) ≤ c ≤

√
2(1− λ2/d)
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Random walks and node expanders

To study random walks, it is convenient to now normalize the
adjacency matrix to form P = A(G )/d .

Since G is bipartite there is no stationary distribution so to make the
process aperiodic, define Q = (I + P)/2 meaning that with probability
1/2, the process stays in the same state. Q now represents a doubly
stochastic Markov process with a uniform stationary distribution {πj}.
The eigenvalues {λ′i} now satisfy λ′i = 1+λi/d

2 so that
1 = λ′1 ≥ λ′2 . . . λ′n = 0. Now suppose we have an expander with
λ′2 ≤ 1− ε

2d .

Fast convergence

maxj
|qtj−πj |
πj
≤ n1.5(λ′2)t where

qt
j is the probability of being in state j at time t.

This implies convergence in O(log n) steps. See Motwani and
Raghavan, Section 6.7.2.
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Application to probability correctness amplification

Consider a polynomial time RP (1-sided error) set (e.g. the composite
numbers, represented in binary or decimal) or BPP (2-sided error) set.

Suppose the algorithm has error probability c (e.g. c = 1/4) using n
random bits.

For an RP (resp. BPP) set we can amplifiy the error bound to ck by
doing k independent trial and hence using kn bits.

Suppose we have an explicit expander with constant degree (say
degree d = 8). Consider a random walk on an (exponential size)
expander where the nodes correspond to n bit strings.

Since the stationary distribution is the uniform distribution, the idea
is to do such a random walk and sample some O(k) nodes, sampling
every b steps (for some appropriate b)

Starting at a random node (using n bits), we will only need n + O(k)
bits to obtain enough trials and the desired ck error.
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#P counting problems

Recall that an NP set L can be defined by L = {x |R(x , y)} where R
is a polynomial time verification algorithm and y is a polynomial
length certificate. (Similarly, RP sets are those where the fraction of
certificates is some constant c > 0.)

A #P counting problem #L is one that can be defined as the number
of certficates for an NP set L.

For example, #SAT is the counting problem that outputs the number
#x of satsifying formulas for an input formula x encoding a CNF
formual F .

Clearly if #L is polynomial time computable, then so is L so we
certainly do not expect counting problems coresponding to NP
complete sets to be computable in polynomial time.
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#P complete counting problems

Clearly #SAT is a #P complete problem in the sense that that any
NP counting problem can be reduced to this problems.

But even if L is polynomial time computable, it does not show that
#L is polynomial time.

For example, given a proper DNF formula F , it is immediately clear
that F is satisfiable and given a bipartite graph G , we can efficiently
determine if G has a perfect matching. However, both #DNF-SAT
and #bipartite-matching are #P complete counting problems.
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Approximating #P complete counting problems

Given the hardness of #P complete problems, what we can hope for
is to compute an estimate of #x for an input instance x . We want an
estimate to fall in the range [(1− ε)#x , (1 + ε)#x ] for every input
instance x .

For a randomized algorithm we would want such an estimate to be
obtained with probability error some δ < 1.

Given that we can encode an ε in log 1/ε bits, we might hope for such
an algorithm to have time bounded by a polynomial is n, log 1/ε and
for randomized algorithms also in time log 1/δ. But it turns out that
this would imply P = #P (or BPP = #P for randomized algorithms).

Instead we will be happy to get algorithms with run time polynomial
in n, (1/ε, and log 1/δ. Such a randomized algorithm are called an
FPRAS algorithm.
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Approximate counting

Unlike the BPP= P question, it turns out that there are some
counting problems (e.g. volume estimnation of a convex body in n
dimensions) for which randomization provably helps.

When the underlying decision problem L is in P, there is a natural
randomized approach, which we can call “basic Monte Carlo
sampling”.

Namely, sample from the space of all possible inputs and let the
fraction of good inputs (i.e. those in the set L) be an estimate of the
fraction of all inputs that are good

Here then is the “abstract estimation problem”: Let f be a Boolean
function over a universe U such that f (U) can be efficiently
computed for any u ∈ U. Assume that U can be sampled uniformly
at random. We want to estimate the size of G = {u|f (u) = 1}.
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The natural estmation approach and its limitation

Let Yi = 1 iff f (ui ) = 1 where ui is the i th sampled input. Choose m
random samples and then estimate |G | by Z = |U|

∑
i Yi/m.

Let ρ = |G |/|U|. Then the basic Monte Carlo estimation is an FRPAS
if m ≥ 4

ε2ρ
ln 2

δ .

So what is the limitation?
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What happens when ρ is small or when it is hard to
sample uniformly

Whe ρ is small (as it can be for say DNF-SAT or bipartite matchings)
or when it is not clear how to sample uniformly (e.g. trying to sample
from the set Mk of all size k matchings and then using this sampling
to recursively estimate the number mk of size k matchings.

When the minimum degree is at least n/2 here is the approach. The
idea is to sample uniformly from Mk ∪Mk−1. This will give estimates
of rk = mk/mk−1

Noting that m1 = |E |, the desired estimate is mn = m1Πn
i=2ri .

To do the sampling, one needs to construct a doubly stochastic
matrix (as in the amplification analysis) such that the resulting
Markov process is rapidly mixing.
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Applications of the smallest eigenvalue
We return to the normalized adjacency matrix A′(G ) with eigenvalues
{αi}.
It can be shown that G is bipartitie iff α1 = −αn.
Recalling that the eigenvalues of A′ are in [1,-1], the matrix I + A′

has eigenvalues in [0,2].
A graph G = (V ,E ) is “close to bipartite” if the smallest value of
I + A′ is close to 0.
Another way to think about being close to bipartite is to have a large
maximum cut(S) relative to |E |.
The best approximation for this NP hard problem is the same ≈ .878
achieved by the same kind of SDP we saw for Max-2-Sat. This ratio
is the best possible assuming the UGC.
The obvious greedy algorithm for max cut (or the naive random
algorithm ) gives a 1/2 approximation and it remained an open
problem to beat 1/2 by a “combinatorial algorithm”. Trevisan uses a
spectral based algorithm that acheievs ratio .531 which was then
improved by Sato to ,614. Can we achieve a combinatorial 3/4
approximation for Max-Cut by a combinational algorithm as known
for Max-Sat?
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Continued spectral applications

Steuer gives some evidence for and against the UGC. The evidence
against is an improved UGC algorithm that exploitts the entire
spectrum (of eigenvalues).

More classical results go back to Hoffman who related the
independence number α(G ) and chromatic number χ(G ) of a graph
to the spectrum.

Namely, for {λi} again being the eigenvalues for the adjcency matrix,
α(G ) ≤ −λn

dmax−λn and

χ(G ) ≥ 1− λ1
λn

.
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