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Announcements and todays agenda

Announcements

1 Assignment 2 is due next Monday, March 27
2 I have posted the first question for Assignment 3.

Todays agenda

1 Streaming algorithms for other “counting problems”

1 Heavy hitters (frequently occuring elements in a data stream)
2 Counting the number of distinct and unique elements

2 The semi-streaming model
3 Relation of the streaming model to other models.
4 Return to offline algorithms

1 Discussion of randomized primality testing.
2 Discussion of weighted majority algorithm
3 The Lovasz Local lemma and the Moser-Tardos algorithm for finding a

satisfying instance of an exact k-SAT formula in which every clause C
shares a variable with at most d < 2k/e other clauses.
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A general class of counting based problems
In what follows, I will not discuss the precise data structures used to
represent and process elements efficiently (in time and space). It may also
be the case that at the end of processing a stream, the answer may have
to be checked or some other post processing might be done. And although
I am focusing on one pass streaming algorithms, many streaming papers
present results for a small nunber of passes.

A general problem of interest in the streaming model is the following:

We have a stream (a1, d1) . . . , (an, dn) where ai ∈ M with |M| = m,
and di ∈ N. We can assume M = {1, 2, . . .m} and either measure
time and space in terms of bit operations or unit cost for elements
and counts stored in wordsr elements

The input (ai , di ) means that the count for element ai has increased
(resp. decreased) by di if di > 0 (resp., di < 0).

When di > 0 (for all i) this is called the cash register model and the
more general model is called the turnstile model.

3 / 45



A general class of counting based problems
In what follows, I will not discuss the precise data structures used to
represent and process elements efficiently (in time and space). It may also
be the case that at the end of processing a stream, the answer may have
to be checked or some other post processing might be done. And although
I am focusing on one pass streaming algorithms, many streaming papers
present results for a small nunber of passes.

A general problem of interest in the streaming model is the following:

We have a stream (a1, d1) . . . , (an, dn) where ai ∈ M with |M| = m,
and di ∈ N. We can assume M = {1, 2, . . .m} and either measure
time and space in terms of bit operations or unit cost for elements
and counts stored in wordsr elements

The input (ai , di ) means that the count for element ai has increased
(resp. decreased) by di if di > 0 (resp., di < 0).

When di > 0 (for all i) this is called the cash register model and the
more general model is called the turnstile model.

3 / 45



Simple occurence counting problems

We will focus on di = 1 (for all i) which is a simple occurence count
model.

In the simple occurence count, we may want to keep track of
frequently occuring elements

There are two common variants of “frequently occuring elements”.
For a given k, we may want to know:

1 Which elements, if any, occur at least n/k times?
2 What are the k most frequently occuring items?

On the other hand we may want to know how many elements occur
only once in the stream or (as a case of the frequency moments
problems) how many distinct items occur in the stream.
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Special case: finding a majority element if one exists
If we want to know the frequency of occurence of any element j , we could
simply maintain a counter for each element. This would require m
counters which (in the desire for small memory) might be prohibitive.

How much space do we need to determine if the stream has a majority
element?

What input parameters should a space bound depend on?
The majority algorithm (first proposed by Boyer and Moore [1980] but not
as a streaming algorithm) finds a majority element if one exists as follows:

Majority algorithm

Initialize c := 0
For i = 1 . . . n

If c = 0
Then Candidate := ai and c := 1
Else If ai = Candidate

Then c := c + 1
Else c := c − 1

EndFor
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Majority algorithm and an extension
Lets say that a majority element occurs more then n/2 times, so as to not
worry about the case that the number of occurrences is exactly n/2.

Claim: If there is a majority element, then it will be the value of
Candidate. Of course, the element in Candidiate may not be a majority
element.

While we might not expect a stream to have a majority element, for a
reasonably large k, we might expect that some elements will occur
frequently. In the heavy hitters problem we are given a k and asked to find
elements (if any) that occur at least n/k times. (Setting k = 2− δ for any
δ > 0 is the special case of the majority element.)

In general we cannot expect to have a small space streaming algorithm
that will exactly solve the heavy hitters problem. Instead we will try for a
streaming algorithm tht solves the ε-heavy hitters problem where we
produce a set C of elements that satisfies:

Every element that occurs at least n/k times is in C and
Every element in C occurs at least n/k − εn times.
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A counter-based ε-heavy hitters algorithm
Twenty years after the Majority algorithm, a “natural” generalization of
Majority was articulated in a couple of papers. In fact the following
algorithm was a rediscovery of an algorithm by Misra and Gries [1982].
Think of the Majority where k = 2 where we use 1 counter. Here we use
k − 1 counters.

Misra and Gries heavy hitters as a streaming algorithm

Initialize C := ∅
For i = 1 . . . n

If ai = Cj % Cj is an element of the set C with count cj
Then cj := cj + 1 cj = 0 is implicitly set for elements not in C
Else If |C | = ` < k − 1

Then C` = ai ; c` := 1 % Start a new counter
Else For j = 1 . . . k − 1,

cj := cj − 1
If cj = 0, then C := C \ Cj % Make room for new candidates
EndFor

EndFor
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ε-heavy hitters continued
If we set k = 1

ε , we guarantee that the count associated with each element
of C is at most εn below its true count.

There are other counter-based variants of the previous algorithm.
Metwally et al [2005] show how to adapt the following algorithm to both
the heavy hitters and k most frequently occuring elements problems.

The Metwaly et al “space-saving” algorithm maintain k (or 1/ε) counters
and now we initialize the counters with the first k occuring elements. And
as before when a new element arrives, if it already is one of the k elements
being “monitored” in a counter, then that count is incremented.
Otherwise, the new element replaces the element having the lowest count
c (at this time) and the count for the new element is set (surprisingly) to
c + 1. The key property is that the minimum counter value min (at the
end) will be at most n/k . (Note that we can assume the k counters are
occupied since there are m > k distinct elements to make the problem
interesting). Furthermore, any element coccuring more than min times
must be maintained in one of the counters.
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Other approaches for solving frequently occuing
elements
There are two other common types of algorithms for heavy hitters, one
based on approximating quantiles, and the other based on “sketches”
which are randomized projections of the input stream viewed as a vector.

One nice approach used in some applications is the count-min sketch
which can be thought of as an example of “compressed sensing”.

A count-min sketch uses a small number (`) of pairwise independent
hashing functions h1, . . . , h`, and a “medium” number (b) of buckets into
which elements are hashed. In large data stream applications, n could be
in the hundres of millions (or billions) and b might be in the low thousands
while ` can be thought of as a small constant. We think of ` and b as
being indepedent of n.

The sketch supports two operations on elements x , namely Increment(x)
and Count(x) where Count(x) is attempting to count the number of times
that Increment(x) has been applied.
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Count-min sketch continued
The idea of the count-min sketch is quite simple but (like other
applications of hashing) very useful.

Whenever an element x appears, we increment the bucket count in hi (x)
for each of the ` hashing functions {hi}. When the stream is completed,
the count Zi for bucket hi (x) would either be the correct count c(x) for
element x (if there were no collisions with other y such that
hi (x) = hi (y)) or (more likely) be an overestimate of the true count for x .
Thus we can take the mini{Zi (x)} as our estimate of c(x) and know that
we can only have an overestimate.

The question then is what is the probability δ that the min-count value
Z = mini Zi for an element x will be (say) more than an εn overestimate.
This will clearly depend on how we set the parameters ` and b.

How would you set b and ` so that:

Prob[Z > c(x) + εn] ≤ δ
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Computing the number of distinct elements and
unique elements in a stream
We want to approximate the number Dn of distinct elements and the
number Un of elements that occurs just once in a stream of n elements.
Here I am following the presentation in the 2009 lecture notes by
Muthukrishnan.

The approach is to estimate Un/Dn and Dn.

We want to sample (close to) uniformly from the distinct elements; that is,
with probablity that each element is selected with probability 1/ ≈ Dn.

Conceptually, if we have k uniformly chosen permutations µj (of the
universe M), then for each such permutation we will keep track of the
element s (and its count) whose rank µj(s) (in the permutation) is the
best so far. Letting cj be the count at the end of the stream for a given

µj , we estimate Un/Dn by EST =
|{j :cj=1}|

k .

Setting k = O(log(1/δ)/ε2), it is shown that :

Prob[(1− ε)Un/Dn ≤ Est ≤ (1 + ε)Un/Dn] ≥ 1− δ
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Computing Un/Dn continued

Ignoring the fact that storing the permutation would already take too
much space, we do the following to compute each cj :

Computing the counts for elements found to have the lowest rank

s := a1; cj = 1
For i = 2 . . . n

If µj(ai ) < µj(s)
Then s := ai ; cj := 1
Else If µj(ai ) = µj(s) then cj := cj + 1;
% Otherwise µj(ai ) > µj(s) and nothing is done

Instead of using random permuations of the universe M, it is sufficient to
have a family of approximate min-wise hashing functions hj that satisfy :
∀S ⊆ M∀s ∈ S |j : [hj(s) = minx∈S | is at least a 1/(1 + ε) fraction of
the number of hash functions in the family. It is known how to specify
such functions using O(log2m) bits.
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Estimating Dn

Suppose we could determine Dn < t for any t = (1 + ε)j for
j = 1, . . . log1+εm. Then we could estimate Dn within a factor of (1+ε).

To determine if Dn < t, it suffices to hash {1, . . . ,m} into {1, . . . , t} for a
sufficient number of independent hash functions hj . If cj = the number of
elements x such that hj(x) = 1, then first estimate that Dj < t iff c = 0.

One gets a good estimate by taking the majority answer for sufficiently
many hj .
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Some results regarding the “semi-streaming” model

Most of the work to date in streaming has concerned computing statistics
and counting and the desired space bound is at most some logarithmic
function of the parameters involved (i.e. n and m).

In 2005, Feigenbaum et al introduced the semi-streaming model in order
to study graph problems in a streaming model. This is still the same
streaming model but now the stream elements are either edges or vertices
of a graph. (We may or may not know in advance m = |E | or n = |V |.)

Since the usual goal is to produce a solution (i.e., a max matching, a max
independent set, a densest subset of vertices, a colouring , etc), we need
at least space n to present a solution. Semi-streaming algorithms aim to
(approximately) solve graph problems using space Õ(n) rather than space
O(m). (Here the soft Õ hides polylog factors.)

The semi-streaming model is studied with regard to both a single pass and
a small number of passes.
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What is known about the bipartite matching
problem in the semi-streaming model?

As far as I know, in the edge arrival model, there is no known worst
case semi-streaming algorithm (even randomized) that achieves an
approximation better than the 1

2 approximation achieved by any
maximal matching algorithm.
There is a slightly improved approximation ratio due to Konrad et al
[2014] if one allows a random ordering of the input edges.
In the vertex arrival model, the randomized Ranking algorithm can be
simulated by a randomized semi-streaming algorithm.
Surprisingly, Goel et al [2011] show that there is a deterministic
semi-streaming algorithm that achieves the 1− 1

e KVV approximation
ratio. We remind oursleves that no deterministic online algorithm can
do better than 1

2 .
It is also interesting to note that the size of a maximium matching (in
an arbitrary undirected graph) can be approximated (within a poly
logarithmic factor) by a streaming algorithm using poly logarithmic
space assuming the input stream is a random ordering of the edges.
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An aside; the edge model vs the vertex model
With regard to the edge vs vertex input models for graph problems, is
there any relation between these input models with respect to various one
pass algorithms (e.g. priority, online adversarial, ROM, i.i.d., streaming)?

In streaming, the issue of the input model makes sense for any graph
problem. But for the online and priority models which require
irrevocable decisions about each input item, the issue only makes
sense if the graph problem can be formulated as either a decision on
edges or a decision of vertices (e.g. matching, shortest path
problems).
With respect to the online models, I do not know how to simulate an
edge input algorithm by a vertex input algorithm or conversely how to
simulate a vertex input algorithm by an edge input algorithm. What
are the advatanges and disadvatages of each input model?
In the streaming and online models we have results that give evidence
that for bipartite matching the vertex model obtains better results.
In the priority framework, any algorithm for the vertex model can be
transformed into an algorithm for the edge model.
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How do the streaming models relate to other
models of computation

Given that we can think of streaming algorithms as online algorithms, it is
natural to compare the streaming model with the competitive analysis
view of online algorithms (i.e., one pass algorithms making irrevocable
decisions about each item).

It should also be clear that we can adapt the streaming model to allow
random input streams (e.g., the i.i.d. distributional models and the ROM
model) and there are some results along these lines. However, we have
only considered the worst case adversarial (streaming) model.

The defining difference in these two online models is that the streaming
model limits space while the competitive analysis online model requires
irrevocable decisions about each input item and these decisions constitute
the solution of the algorithm. The competitive analysis model does not
readily apply to (say) counting problems. (About what are we making
irrevocable decisions?)
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Semi-streaming model vs. competitive analysis
model
Thus to compare the models, we should restrict ourselves to search and
optimization problems using the semi-streaming modeling.

As just noited, bipartite matching in the vertex input model can be solved
deterministically by a semi-streaming algorithm with approximation ratio
1− 1

e and we know that in the competitive analysis world we cannot
deterministically do better than 1

2 .

The intuitition is that the streaming model is a more permissive model in
that it does not have to make irrevocable decisions. And it almost seems
like any compeititve anaylsis online algorithm (deterministic or
randomized) can be simulated by a streaming algorithm which is certainly
the case for say the Ranking algorithm.

But a competitive analysis algorithm does not have to maintain the Õ(n)
space bound and it could be remembering all the edges it has seen thus far
and moreover, use even more space in determining its decisions. However,
it is not clear if such an online graph algorithm could exploit this.
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Streaming algorithms becoming parallel algorithms

Streaming algorithms and algorithmic frameworks for parallel computation
(such a Map Reduce) are both approaches that are meant for very large
datasets.

Looking back at a number of the streaming algorithms we see that they
often are running a number of different processes in paralell and use one or
only a few passes over the data. For example, the algorithms for say heavy
hitters maintain several counters (or hash buckets).

This aspect of many streaming algorithms (with one or few passes) lends
itself to parallelization. As a specific examle, Bahmani et al [2012] design
streaming algorithms for the densest subgraph problem and then
implement those algorithms within the distributed MapReduce paradigm.
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Map Reduce

Map Reduce algorithms do computation on a large number of servers
interconnected by a fast network. (There is no shared memory.) Each
server performs computations (on the data they hold) and then exchange
data.
Map Reduce algorithms (as say inplemented in Hadoop) operate on
(key,value) pairs in rounds, each round consisting of three stages:

Map: Transforms a (key,value) into one or several new (key,value)
pairs.

Shuffle: All the values associated with a given key are sent to the
same (perhaps virtual) machine. This aspect is carried out
automatically by the system.

Reduce: All values associated with a given key get batched into a
multiset of (key,value) pairs

See the models specified in Feldman et al [2010], Karloff et al [2010] and
Beame et al [2013].
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Primality testing
I now want to briefly turn attention to one of the most influential
randomized algorithms, namely a poly time randomized algorithm for
primality (or perhaps better called compositeness) testing. Let
PRIME = {N|N is a prime number} where N is represented in say
binary (or any base other than unary) so that n = |N| = O(logN).
History of polynomial time algorithms:

1 Vaughan 1972 showed that PRIMES is in NP. Note that co-PRIMES
(i.e. the composites) are easily seen to be in NP.

2 One sided error randomized algorithms (for compositeness) by Solovay
and Strassen and independently Rabin in 1974. That is,
Prob[ALG says N prime |N composite] ≤ δ < 1 and Prob[ALG says N
composite |N prime] = 0

3 The Rabin test is related to an algorithm by Miller that gives a
deterministic polynomial time algorithm assuming a conjecture that
would follow from (the unproven) ERH. The Rabin test is now called
the Miller-Rabin test.

4 Goldwasser and Killian establish a 0-sided randomized algorithm.
5 In 2002, Agarwal, Kayal and Saxena show that primality is in

deterministic polynomial time.
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Why consider randomized tests when there is a
deterministic algorithm?

Even though there is now a deterministic algorithm, it is not nearly as
efficient as the 1-sided error algorithms which are used in practice.
These randomized results spurred interest in the topic (and other
number theoretic algorithms) and had a major role in cryptographic
protocols (which often need random large primes). Moreover, these
algorithms became the impetus for major developments in randomized
algorithms.

While many of our previous algorithms (excluding the streaming
algorithm for Fk) might be considered reasonably natural (or natural
extensions of a deterministic algorithm), the primality tests require
some understanding of the subject matter (i.e. a little number theory)
and these algorithms are not something that immediately comes to
mind.
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Some basic number theory we need

Z ∗N = {a ∈ ZN : gcd(a,N) = 1} is a (commutative) group under
multiplication mod N.

If N is prime, then

1 For a 6= 0(modN), aN−1 = 1(modN).
2 Z∗

N is a cyclic group; that is there exists a generator g such that
{g , g2, g3, . . . , gN−1} (all mod N) is the set Z∗

N . This implies that
g i 6= 1(modN) for any 1 ≤ i < N − 1.

3 There are exactly two square roots of 1 in Z∗
N , namely 1 and -1.

The Chinese Remainder Theorem: Whenever N1 and N2 are relatively
prime (i.e. gcd(N1,N2) = 1), then for all v1 < N1 and v2 < N2, there
exists a unique w < N1 · N2 such that v1 = w(modN1) and
v2 = w(modN2).
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A simple but “not quite” correct algorithm

We also need two basic computational facts.

1 ai mod N can be computed efficiently.

2 gcd(a, b) can be efficiently computed.

The following is a simple algorithm that works except for an annoying set
of numbers called Carmichael numbers.

Simple algorithm ignoring Carmichael numbers

Choose a ∈ ZN uniformly at random.
If gcd(a,N) 6= 1, then Output Composite
If aN−1 mod N 6= 1, then Output Composite
Else Output Prime
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When does the simple algorithm work?

S = {a|gcd(a,N) = 1 and aN−1 = 1} is a subgroup of Z ∗N
If there exists an a ∈ Z ∗N such that gcd(a,N) = 1 but aN−1 6= 1, then
S is a proper subgroup of Z ∗N .

By Lagrange’s theorem, if S is a proper subgroup, |S | must divide the
order of the group so that |S | ≤ N−1

2

Thus the simple algorithm would be a 1-sided error algorithm with
probabiltiy < 1

2 of saying Prime when N is Composite.

The only composite numbers that give us trouble are the Carmichael
numbers (also known as false primes) for which aN−1modN = 1 for
all a such that gcd(a,N) = 1.

It was only recently (relatively speaking) that in 1994 it was proven
that there are an infinite number of Carmichael numbers.

The first three Carmicahel numbers are 561, 1105, 1729
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Miller-Rabin 1-sided error algorithm

Let N − 1 = 2tu with u odd %Since wlg. N is odd, t ≥ 1
Randomly choose non zero a ∈ ZN %Hoping that a will be composite
certificate
If gcd(a,N) 6= 1 then report Composite
x0 = au %All computation is done mod N
For i = 1 . . . t

xi := x2i−1
If xi = 1 and x i−1 /∈ {−1, 1}, then report Composite

End For
If xt 6= 1, then report Composite %xt = xN−1

Else report Prime

26 / 45



Analysis sketch of Miller-Rabin

Let S be the set of a ∈ N that pass (i.e. fool) the Rabin-Miller test.

S is a subgroup of Z ∗N . We want to show that S is a proper subgroup
and then as before by Langrange we will be done.

It suffices then to find one element w ∈ Z ∗N that will not pass the
Miller-Rabin test.
Case 1: N is not Carmichael and then we are done.
Case 2: N is Carmichael and hence N cannot be a prime power.

I N = N1 · N2 and gcd(N1,N2) = 1 and of course odd
I The non-certificates must include some b such that b2

iu = −1(modN)

and hence b2
iu = −1(modN1)

I By the Chinese Remainder Theorem, there exists w = v(modN1) and
w = 1(modN2)

I Hence w2iu = −1(modN1) and w2iu = 1(modN2)
I This implies w2iu /∈ {−1, 1} (mod N)
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New topic: the weighted majority algorithm
I am following a survey type paper by Arora, Hazan and Kale [2008]. To
quote from their paper: “We feel that this meta-algorithm and its analysis
should be viewed as a basic tool taught to all algorithms students together
with divide-and-conquer, dynamic programming, random sampling, and
the like”.

The weighted majority algorithm and generalizations
The ”classical” WMA pertains to the following situation:
Suppose we have say n expert weathermen (or maybe “expert” stock
market forecasters) and at every time t, they give a binary prediction
(rain or no rain, Raptors win or lose, dow jones up or down, Canadian
dollar goes up or down, Trump will tweet).
Now some or all of these experts may actually be getting their
opinions from the same sources (or each other) and hence these
predictions can be highly correlated.
Without any knowledge of the subject matter (and why should I be
any different from the “experts”) I want to try to make predictions
that will be nearly as good (over time t) as the BEST expert.
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The weighted majority algorithm

The WM algorithm

Set wi (0) = 1 for all i
For t = 0...

Our (t + 1)st predication is
0: if

∑
{i : expert i predicts 0} wi (t) ≥ (1/2)

∑
i wi (t)

1: if
∑
{i : expert i predicts 1} wi (t) ≥ (1/2)

∑
i wi (t) ; arbitrary o.w.

% We vote with weighted majority; arbitrary if tie

For i = 1..n
If expert i made a mistake on (t + 1)st prediction

then wi (t + 1) = (1− ε)wi (t);
else wi (t + 1) = wi (t)

End If
End For

End For
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How good is our uninformed MW prediction?

Theorem : Perfomance of WM

Theorem: Let mi (t) be the number of mistakes of expert i after the first t
forecasts, and let M(t) be the number of our mistakes. Then for any
expert i (including the best expert) M(t) ≤ 2 ln n

ε + 2(1 + ε)mi (t) .

That is, we are “essentially” within a multiplicative factor of 2 plus an
additive term of the best expert (without knowing anything).

Using randomization, the factor of 2 can be removed. That is, instead
of taking the weighted majority opinion, in each iteration t, choose
the prediction of the i th expert with probability wi (t)/

∑
i wi (t)

Theorem: Performance of Randomized WM

For any expert i , E[M(t)] ≤ ln n
ε + (1 + ε)mi (t)
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Proof of deterministic WM
Let’s assume that ε ≤ 1/2. It follows that

−ε− ε2 ≤ ln(1− ε) < −ε
Let wi ,t be the weight of the i th expert at time t and let mi (t) be the
number of mistakes made by expert i . . Consider the potential function
Φ(t) =

∑
i wi ,t . Clearly

Φ(t) ≥ wi ,t = (1− ε)mi (t)

We now need an upper bound on Φ(t). Since each time the WM
algoriithm makes a mistake, at least half of the algorithms make a mistake
so that Φ(t) ≤ (1− ε/2)Φ(t − 1). Starting with Φ(0) = n, by induction

Φ(t) ≤ n · (1− ε/2)M(t)

Putting the two inequalities together and taking logarithms

ln(1− ε)mi (t) ≤ ln n + M(t) ln(1− ε/2)

The argument is completed by rearranging, using the above facts
concerning ln(1− ε) and then dividing by ε/2. 31 / 45



What is the meaning of the randomized
impovement?

In many applications of randomization we can argue that
randomization is (provably) necessary and in other applications, it
may not be provable so far but current experience argues that the
best algorithm in theory and practice is randomized.

For some algorithms (and especially online algorithms) analyzed in
terms of worst case performance, there is some debate on what
randomization is actually accomplishing.

In a [1996] article Blum states that “Intuitively, the advantage of the
randomized approach is that it dilutes the worst case”. He continues
to explain that in the determinstic algorithm, slightly more than half
of the total weight could have predicted incorrectly, causing the
algorithm to make a mistake and yet only reducing the total weight
by 1/4 (when ε = 1/2). But in the randomized version, there is still a
.5 probability that the algorithm will predict correctly. Convincing?
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An opposing viewpoint
In the blog LessWrong this view is strongly rejected. Here the writer
makes the following comments: “We should be especially suspicious
that the randomized algorithm guesses with probability proportional
to the expert weight assigned. This seems strongly reminiscent of
betting with 70% probability on blue, when the environment is a
random mix of 70% blue and 30% red cards. We know the best bet
and yet we only sometimes make this best bet, at other times betting
on a condition we believe to be less probable.
Yet we thereby prove a smaller upper bound on the expected error. Is
there an algebraic error in the second proof? Are we extracting useful
work from a noise source? Is our knowledge harming us so much that
we can do better through ignorance?” The writer asks: “So what’s
the gotcha ... the improved upper bound proven for the randomized
algorithm did not come from the randomized algorithm making
systematically better predictions - doing superior cognitive work,
being more intelligent - but because we arbitrarily declared that an
intelligent adversary could read our mind in one case but not in the
other.” 33 / 45



Further defense of the randomized approach

Blum’s article expresses a second benefit of the randomized approach:
“Therefore the algorithm can be naturally applied when predictions
are ‘strategies’ or other sorts of things that cannot easily be combined
together. Moreover, if the ‘experts’ are programs to be run or
functions to be evaluated, then this view speeds up prediction since
only one expert needs to be examined in order to produce the
algorithm’s prediction ....”

We also know (in another context) that ROM ordering can beat any
deterministic priority order say for the online bipartite matching
problem.
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Generalizing: The Multiplicative Weights algorithm

The Weighted Majority algorithm can be generalized to the multiplicative
weights algorithm. If the i th expert or decision is chosen on day t, it incurs
a real valued cost/profit mi (t) ∈ [−1, 1]. The algorithm then updates
wi (t + 1) = (1− εmi (t))wi (t). Let ε ≤ 1/2 and Φ(t) =

∑
i wi (t). On day

t, we randomly select expert i with probability wi (t)/Φ(t).

Performance of The MW algorithm

The expected cost of the MW algorithm after T rounds is∑T
t=1 m(t) · p(t) ≤ ln n

ε +
∑T

t=1mi (t) + ε
∑T

t=1 |mi (t)|
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Reinterpreting in terms of gains instead of losses

We can have a vector m(t) of gains instead of losses and then use the
“cost vector” −m(t) in the MW algorithm resulting in:

Performance of The MW algorithm for gains∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1mi (t)− ε
∑T

t=1 |mi (t)|

By taking convex combinations, an immediate corollary is

Performance wrt. a fixed distribution p∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1 m(t)− ε|m(t)|)p
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An application to learning a linear binary classifier
Instead of the online application of following expert advice, let us now
think of “time” as rounds in an iterative procedure. In particular, we
would like to compute a linear binary classifier (when it exists).

We are trying to classsify objects characterized by n features; that is
by points a in <n. We are given m labelled examples
(a1, `1), . . . , (am, `m) where `j ∈ {−1,+1}
We are going to assume that these examples can be “well classified”
by a linear classifier in the sense that there exists a non negative
vector x∗ ∈ <n (with xi ≥ 0) such that sign(aj · x∗) = `j for all j .

This is equivalent to saying `jaj · x∗ ≥ 0 and furthermore (to explain
the “well”) we will say that `jaj · x∗ ≥ δ for some δ > 0.

The goal now is to learn some linear classifer; ie a non negative
x ∈ <n such that `jaj · x∗ ≥ 0. Without loss of generality, we can
assume that

∑
i xi = 1.

Letting bj = `jaj , this can now be veiwed as a reasonably general LP
(search) problem.
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Littlestone’s Winnow algorithm for learning a linear
classifier

Litlestone [1987] used the multiplicative weights approach to solve
this linear classification problem.
Let ρ = maxj ||bj ||∞ and let ε = δ/(2ρ)
The idea is to run the MW algorthm with the decisions given by the n
features and gains specified by the m examples. The gain for feature i
with respect to the j th example is defined as (bj)i/ρ which is in [-1,1].
The x we are seeking is the distribution p in MW.

The Winnow algorithm

Initialize p
While there are points not yet satisfied

Let bj · p < 0 % a constraint not satisfied
Use MW to upate p

End While

Bound on number of iterations

The Winnow algorithm will terminate in at most d4ρ2 ln n/δ2e iterations.38 / 45



Some additional remarks on Multiplicative Weights

The survey by Arora, Hazan and Kale [2012] discusses other modifications
of the MW paradigm and numerous applications. In terms of applications,
they sketch results for

Aporoximately solving (in the sense of property testing) the decision
problem for an LP; there that is given linear constraints expressed by
Ax ≥ b, the decision problem is to see if such a non-negative x exists
(or more generally, if x is in some given convex set). The algorithm
either returns a x : Aix ≥ bi − δ for all i and some additive
approximation δ or says that the given LP was infeasible.

Solving zero sum games approximately.

The AdaBoost algorithm of Shapire and Freund

Some other specific applications including a class of online algorithms.
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The Lovász Local Lemma (LLL)

Suppose we have a set of “bad” random events E1, . . . ,Em with
Prob[Ei ] ≤ p < 1 for each i . Then if these events are independent we
can easily bound the probability that none of the events has occurred;
namely, it is (1− p)m > 0.

Suppose now that these events are not independent but rather just
have limited dependence. Namely suppose that each Ei is dependent
on at most r other events. Then the Lovász local Lemma (LLL)
states that if e · p · (r + 1) is at most 1, then there is a non zero
probability that none of the bad events Ei occurred.

As stated this is a non-constructive result in that it does not provide a
joint event in which none of the bad events occured.

There are a number of applications of LLL including (Leighton,
Maggs, Rao) routing, the restricted machines version of the Maxmin
“Santa Claus” problem and as we shall now see, solving exact k-SAT
under suitable conditions on the clauses.
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A somewhat canonical application of the LLL

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be a an exact k CNF formula. From our
previous discussion of the exact Max-k-Sat problem and the naive
randomized algorithm, it is easy to see that if m < 2k , then F must
be satisfiable. (E [clauases satisfied] = 2k−1

2k
m > m− 1 when m < 2k .)

Suppose instead that we have an arbitrary number of clauses but now
for each clause C , at most r other clauses share a variable with C .

If we let Ei denote the event that Ci is not satisfied for a random
uniform assignment and hence having probability 1/(2k), then we are
interested in having a non zero probability that none of the Ei

occurred (i.e. that F is satisfiable).

The LLL tells us that if r + 1 ≤ 2k

e , then F is satisfiable.

As informally but nicely stated in Gebauer et al [2009]: “In an
unsatisable CNF formula, clauses have to interleave; the larger the
clauses, the more interleaving is required.”
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A constructive algorithm for the previous proof of
satisfiability

Here we will follow a somewhat weaker version (for r ≤ 2k/8) proven
by Moser [2009] and then improved by Moser and G. Tardos [2010] to
give the tight LLL bound. This proof was succinctly explained in a
blog by Lance Fortnow

This is a constructive proof in that there is a randomized algorithm
(which can be de-randomized) that with high probability (given the
limited dependence) will terminate and produce a satisfying
assignment in O(mlogm) evaluations of the formula.

Both the algorithm and the analysis are very elegant. In essence, the
algorithm can be thought of as a local search search algorithm and it
seems that this kind of analysis (an information theoretic argument
using Kolmogorov complexity to bound convergence) should be more
widely applicable.

42 / 45



The Moser algorithm

We are given an exact k-CNF formula F with m variables such that for
every clause C , at most r ≤ 2k/8 other clauses share a variable with C .

Algorithm for finding a satisfying truth assignment

Let τ be a random assignment
Procedure SOLVE

While there is clause C not satisfied
Let C be the lexicographically first such clause and Call FIX(C)

End While

Procedure FIX(C)
Randomly set all the variables occuring in C
While there is a neighbouring unsatisfied clause D

Let D be the lexicographically first such clause and Call FIX(D)
End While
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Sketch of Moser algorithm analysis

Suppose the algorithm makes at least s recursive calls to FIX. Then
n + s ∗ k random bits describes the algorithm computation up to the
sth call at which time we have some true assignment τ ′.

That is, the computation (if it halts in s calls is described by the n bits
to describe the initial τ and the k bits for each of the s calls to FIX.

Using Kolmogorov complexity, we state the fact that most random
strings cannot be compressed.

Now we say that r is sufficiently small if k − log r − c > 0 for some
constant c , Then the main idea is to describe these n + s ∗ k bits in a
compressed way if s is large enough and r is small enough.
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Moser proof continued

Claim: Any C that is satisfied before Fix(C) is called in SOLVE
remains satisfied.

Claim: Working backwards from τ ′ we can recover the original
(uniformly random) n + s ∗ k bits using n +m logm + s(log r + c) bits
which is possible if we know the clauses being fixed since then we
know which k bits are being flipped. That is, we have n for τ ′,
m logm for calls to FIX in SOLVE and log r + c for each recursive call
where the constant c is used to indicate the end of a recursive call.

By the basic fact of Kolmogorov complexity we must have
n + m logm + s(logr + c) ≥ n + s ∗ k or equivalently
s(k − log r − c) ≤ m logm which in turn implies
r < 2k−c in order for s to be positive so that s = O(m logm).

Together with G. Tardos, the bound is shown to match the bound of
the Lovász local Lemma (LLL) and that the algorithm can be
de-randomized.
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