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Lecture 1

Course Organization:
1 Sources: No one text; lots of sources including specialized graduate

textbooks, my posted lecture notes (beware typos), lecture notes
from other Universities, and papers. Very active field. Foundational
course but we will discuss some recent work and research problems.

2 Lectures and Tutorials: One two hour lecture per week with
tutorials as needed and requested; not sure if and when we will have a
TA.

3 Grading: Will depend on how many students are taking this course
for credit. In previous offerings there were three assignments with an
occasional opportunity for some research questions. I may have to
have some more supervised aspect to the grading depending on
enrollment.

4 Office hours: TBA but mainly, when I am in my door is open and I
welcome questions (unless I am preoccupied). So feel free to drop by
and/or email me to schedule a time. My office is SF 2303B and my
email is bor@cs.toronto.edu. The course web page is
www.cs.toronto.edu/˜bor/2420s17
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What is appropriate background?

In short, a course like our undergraduate CSC 373 is essentially the
prerequisite.

Any of the popular undergraduate texts. For example, Kleinberg and
Tardos; Cormen, Leiserson, Rivest and Stein; DasGupta,
Papadimitriou and Vazirani.

It certainly helps to have a good math background and in particular
understand basic probability concepts, and some graph theory.

BUT any CS/ECE/Math graduate student (or mathematically oriented
undergrad) should find the course accessible and useful.
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Comments and disclaimers on the course perspective

This is a graduate level “foundational course”. However, I will focus
somewhat on my current research perspective; this then does not
represent a standard introduction to the field.

But in my defense, perhaps most graduate algorithms courses are
biased towards some research perspective. I do not think there is a
standard course in the same way that the previously mentioned texts
represent a standard for an undergraduate course.

Given that CS might be considered (to some extent) The Science and
Engineering of Algorithms, one cannot expect any comprehensive
introduction to algorithm design and analysis. Even within theoretical
CS, there are many focused courses and texts for particular subfields.

I have added the word theory to the course title to reflect my interest
in making generally informal concepts a little more precise. Also there
is growing interest in furthering the relation between complexity
theory to algorithmic design questions.
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Reviewing some basic algorithmic paradigms

We begin with some “conceptually simple” search/optimization algorithms.

The conceptually simplest “combinatorial” optimization algorithms

Given an optimization problem, it seems to me that the conceptually
simplest approaches are:

brute force search

greedy

local search

Comment

We usually dismiss brute force as it really isn’t much of an algorithm
approach but might work for small enough problems.

Moreover, sometimes we can combine some aspect of brute force
search with another approach as we will see by combining brute force
and greedy.
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Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.

The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.

The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

Huffman’s algorithm for optimal prefix codes.

Graham’s online and LPT approximation algorithms for makespan
minimization on identical machines.

The 2-approximation for unweighted vertex cover via maximal
matching.

The “natural greedy” ln(m) approximation algorithm for set cover.
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Greedy algorithms:
Graham’s online and LPT makespan algorithms

Let’s start with these two greedy algorithms that date back to 1966
and 1969 technical reports.

These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn’t use that terminology).

This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).

Moreover, there are some general concepts to be observed in this
work and even after nearly 50 years still many open questions
concerning the many variants of makespan problems.
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The makespan problem for identical machines

The input consists of n jobs J = J1 . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[ j] and OPT≥ 1

m

n�
j=1

T[ j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[ j] ≤ OPT. To finish the proof, we must show that Total[i]− T[ j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[ j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[ j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[ j]≤ 1

m
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by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �
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Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.
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Aside: The Many Variants of Online Algorithms

As I indicated, Graham’s algorithm could be viewed as the first example of
what has become known as competitive analysis (as named in a paper by
Manasse, McGeoch and Sleator) following the paper by Sleator and Tarjan
which explicitly advocated for this type of analysis. Another early (pre
Sleator and Tarjan) example of such analysis was Yao’s analysis of online
binpacking algorithms.

In competitive analysis we compare the performance of an online algorithm
against that of an optimal solution. The meaning of online algorithm here
is that input items arrive sequentially and the algorithm must make an
irrevocable decision concerning each item. (For makespan, an item is a job
and the decision is to choose a machine on which the item is scheduled.)

But what determines the order of input item arrivals?
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The Many Variants of Online Algorithms continued

In the “standard” meaning of online algorithms (for CS theory), we
think of an adversary as creating a nemesis input set and the ordering
of the input items in that set. So this is traditional worst case analysis
as in approximation algorithms applied to online algorithms. If not
otherwise stated, we will assume this as the meaning of an online
algorithm and if we need to be more precise we can say online
adversarial model.
We will also sometimes consider an online stochastic model where an
adversary defines an input distribution and then input items are
sequentially generated i.i.d from this distribution. (There can be more
general stochastic models but the i.i.d model is common in analysis.)
This is a special case of stochastic analysis as often seen in OR.
In the i.i.d model, we can assume that the distribution is known by
the algorithm or unknown.
In the random order model (ROM), an adversary creates a size n
nemesis input set and then the items from that set are given in a
uniform random order (i.e. uniform over the n! permutations)
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Second aside: more general online frameworks

In the standard online model (and the variants we just mentioned), we are
considering a one pass algorithm that makes one irrevocable decision for
each input item.

There are many extensions of this one pass paradigm. Without elaborating
at this time we mention the following:

An algorithm may be allowed some ways to revoke previous decisions.

There may be some forms of lookahead (e.g. buffering of inputs).

The algorithm may maintain a “small’ number of solutions and then
(say) take the best of the final solutions.

The algorithm may do several passes over the input items.

Throughout our discussion of algorithms, we can consider deterministic or
randomized algorithms. In the online models, the randomization is in
terms of the decisions being made. (Of course, the ROM model is an
example of where the ordering of the inputs is randomized.)

11 / 1



Returning to Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m ;

that is, for any set of jobs J , CGreedy (J ) ≤ (2− 1
m )COPT (J ).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT ≥ (
∑

j pj)/m; OPT ≥ maxjpj

What is CGreedy in terms of these requirements for any schedule?
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Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is the analogy of asymptotic
approximation ratios.

NOTE: Often, I will not provide proofs in the lecture notes but rather will
do or sketch proofs in class (or leave proof as an exercise).

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.
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Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

We will present the priority model for greedy (and greedy-like)
algorithms. I claim that all the algorithms mentioned on slide 6 can
be formulated within the priority model.

Asssuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n log m)

which is (n log n) since we can assume n ≥ m.
I the LPT algorithm would have time complexity O(n log n).
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Partial Enumeration Greedy

Combining the LPT idea with a brute force approach improves the
approximation ratio but at a significant increase in time complexity.

I call such an algorithm a “partial enumeration greedy” algorithm.

Optimally schedule the largest k jobs (for 0 ≤ k ≤ n) and then greedily
schedule the remaining jobs (in any order).

The algorithm has approximation ratio no worse than

(
1 +

1− 1
m

1+bk/mc

)
.

Graham also shows that this bound is tight for k ≡ 0 mod m.

The running time is O(mk + n log n).

Setting k = 1−ε
ε m gives a ratio of at most (1 + ε) so that for any

fixed m, this is a PTAS (polynomial time approximation scheme).
with time O(mm/ε + n log n).
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Makespan: Some additional comments

There are many refinements and variants of the makespan problem.

There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the makespan problem.

The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m ≥ 4.
Basic idea: leave some room for a possible large job; this forces the
online algorithm to be non-greedy in some sense but still within the
priority model which subsumes online algorithms.

Randomization can provide somewhat better competitive ratios.

Makespan has been actively studied with respect to three other
machine models.
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The uniformly related machine model

Each machine i has a speed si

As in the identical machines model, job Jj is described by a
processing time or load pj .

The processing time to schedule job Jj on machine i is pj/si .

There is an online algorithm that achieves a constant competitive
ratio.

I think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al.

Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.438 inapproximation of Berman et al.
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The restricted machines model

Every job Jj is described by a pair (pj , Sj) where Sj ⊆ {1, . . . ,m} is
the set of machines on which Jj can be scheduled.
This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.
Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting problem and we will look
at some recent work later.
Azar et al show that log2(m) (resp. ln(m)) is (up to ±1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.
It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Ω( logm

log logm ) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable
machines.
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The unrelated machines model

This is the most general of the makespan machine models.

Now a job Jj is represented by a vector (pj ,1, . . . , pj ,m) where pj ,i is
the time to process job Jj on machine i .

A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

There is an online algorithm with approximation O(log m). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard (which we will discuss later).

NOTE: All statements about what we will do later should be
understood as intentions and not promises.
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The knapsack problem

The {0,1} knapsack problem

Input: Knapsack size capacity C and n items I = {I1, . . . , In} where
Ij = (vj , sj) with vj (resp. sj) the profit value (resp. size) of item Ij .

Output: A feasible subset S ⊆ {1, . . . , n} satsifying
∑

j∈S sj ≤ C so
as to maximize V (S) =

∑
j∈S vj .

Note: I would prefer to use approximation ratios r ≥ 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios ρ ≤ 1 for maximization problems; i.e.
ALG ≥ ρOPT . For certain topics, this is the convention.

It is easy to see that the most natural greedy methods (sort by
non-increasing profit densities

vj
sj

, sort by non-increasing profits vj ,

sort by non-decreasing size sj) will not yield any constant ratio.

Can you think of nemesis sequences for these three greedy methods?

What other orderings could you imagine?
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The partial enumeration greedy PTAS for knapsack

PGreedyk Algorithm

Sort I so that v1
s1
≥ v2

s2
. . . ≥ vn

sn
For every feasible subset H ⊆ I with |H| ≤ k

Let R = I − H and let OPTH be the optimal solution for H
Consider items in R (in the order of profit densities)
and greedily add items to OPTH not exceeding knapsack capacity C .

% It is sufficient for the approximation ratio to stop
as soon as an item is too large to fit

End For
Output: the OPTH having maximum profit.
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Sahni’s PTAS result

Theorem (Sahni 1975): V (OPT ) ≤ (1 + 1
k )V (PGreedyk).

This algorithm takes time knk and setting k = 1
ε yields a (1 + ε)

approximation running in time 1
εn

1
ε .

An FPTAS is an algorithm achieving a (1 + ε) approximation with
running time poly(n, 1ε ). There is an FPTAS for the knapsack problem
(using dynamic programming and scaling the input values) so that
the PTAS algorithm for knapsack was quickly subsumed. But still the
partial enumeration technique is a general approach that is often
useful in trying to obtain a PTAS (e.g. as mentioned for makespan).

This technique (for k = 3) was also used by Sviridenko to achieve an
e

e−1 ≈ 1.58 approximation for monotone submodular maximization
subject to a knapsack constraint. It is NP-hard to do better than a
e

e−1 approximation for submodular maximization subject to a
cardinality constraint (i.e. when all knapsack sizes are 1).

Sometime such inapproximations are more precisely stated as
”NP-hard to achieve e

e−1 + ε for any ε > 0”.
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The priority algorithm model and variants

Before temporarily leaving greedy (and greedy-like) algorithms, I want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms we mentioned? With the exception of
Huffman coding (which we can also deal with), like online algorithms,
all these algorithms consider one input item in each iteration and
make an irrevocable “greedy” decision about that item..

We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dk

about each input item Ik (e.g. on what machine to schedule job Ik in
the makespan case) such that {(I1,D1), . . . , (In,Dn)} constitutes a
feasible solution.
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Priority model continued

Note: that a problem is only fully specified when we say how input
items are represented. (This is usually implicit in an online algorithm.)

We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn’t always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation.
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