
CSC 2420 Spring 2016, Assignment 3
Due date: April 18, noon

NOTE: If you are taking the course for credit, then you may either work
by yourself or with at most one other student taking the course for credit.
You must specify with whom you are collaborating and the extent of col-
laboration. It is certainly preferable for you to solve the questions without
consulting a published source. However, if you are using a published source
then you must specify the source and you should at least try to improve upon
the presentation of the result.

1. Recall that Yanakakis showed that Johnson’s Max-Sat algorithm was
the derandomization of the naive randomizaed algorithm. The naive
algorithm and Johnson’s algorithm can both be viewed as online al-
gorithms where the naive algorithm can be implemented in what we
called input model 0 whereas Johnson’s algorithm can be implememted
in what we called input model 1. See Lecture 7. Yannakakis also
showed that Johnson’s algorithm is no better than a 2

3
approximation.

Yanakakis’ (non exact) 2-Sat nemesis input consists of three clauses;
namely, x ∨ y, x ∨ ȳ, and then either clause y or clause ȳ. Variable x
arrives first in the online order. The following inapproximation results
concerning max-of-2 online algorithms are due to Nicolas Pena and in
fact hold for any max-of-k online algorithms for any constant k. By an
α inapproximation, we mean that we cannot do better than obtaining
an α approximation ratio (or sometimes to be more precise we mean
than we cannot achieve α + ε for any ε > 0). By a max-of-k online
algorithm for max-sat, we mean a collection of k deterministic online
algorithms for max sat (eg Johnson’s algorithm is an online algorithm)
each making possibly different decisions (true or false) for each propo-
sitional variable (and each facng the same online sequence of variables).
Then take the best solution.

(a) Complete the Yannakakis argument showing the 2
3

inapproxima-
tion even for input model 3.

(b) Prove a 3
4

inapproximation with respect to input model 2 for any
max− of − 2 online algorithm for exact Max-2-Sat.
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Hint: The nemesis input will consist of three propositional vari-
ables, x1, x2 and y with variable y occuring last again in the input
order.

(c) (Bonus) Prove a 5
8

inapproximation with respect to input model
0 for any max− of − 2 online algorithm for non exact 2-Sat.
Note: As of now the proof for this inapproximation needs repeated
clauses. The 5

8
inapproximation is clearly than the 2

3
approxima-

tion achieved by Johnson’s algorithm with respect to input model
1. Johnson’s algorithm (and all the algorithms presented for Max-
Sat problems work whether or not there are repeated clauses. But
it would be more satisfying if an inapproximation result did not
use repeated clauses.

2. Recall the Yannakakis randomized rounding algorithm for Max-Sat
that achieves a 1− 1

e
expected approximation. This can also be coupled

with the naive randomized algorithm to achieve a 3
4

expected approx-
imnation ratio.

• Desribe how you would derandomize the randomized rounding
algorithm to achieve a deterministic 1− 1

e
approximation for Max-

Sat.

• In the case of Max-k-Sat, we indicated how the derandomization
could be implemented by an online algorithm in the simplest input
model for Max-Sat where each propositional variable x is repre-
sented by the name, weight and length of each clause in which x
appears as a literal and the same for x̄. Do you think the Yan-
nakakis algoerithm can be implemented by a deterministic online
algorithm in such an input model? Explain your answer.

3. We are given a degree bound d << n and query access to a partial table
for a function f : Q→ Q; namely given {(x1, f(x1), . . . , (xn, f(xn)} we
can access any (xi, f(xi)) in one query. Consider the following:

(a) We want to test if the partial table f is produced by a degree
d polynmial p or if it is “far-away” from any degree d polyno-
mial where by far-away we mean that f(xi) = p(xi) for at most
(1− 2/d)n of the points given in the table. Provide a randomized
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1-sided error algorithm that will make O(d) queries, always re-
turning p if it exists and with probability ≥ δ will determine that
f is far-away from any degree d polynomial. If neither condition
is true, the algorithm can give any answer.

Analyze the probability δ that can be achieved in terms of the
number of queries used.

(b) We now want to test if the partial table f is “close-to” a degree
d polynomiial p or “far-away” where far-away is as before and
“close-to” means that f(xi) = p(xi) for at least (1 − 1/d)n of
the points given in the table. Provide a randomized 2-sided error
algorithm that will make O(d) queries, returning p if it exists with
probability ≥ δ or determining with probability ≥ δ that f is far-
away from any degree d polynomial. If neither condition is true,
the algorithm can give any answer.

4. Give an informal but convincing argument to complete the probabilistic
analysis for the sublinear time algorithm for searching in an anchored
sorted linked list. See Lecture 10.

5. Consider the proof of the approximation ratio provided by the 1-exchange
local search algorithm for maximizing a monotone submodular function
subject to a matroid constraint. See slides 28,29,30 in Lecture 11.

(a) Prove the first fact about submodular functions that appears on
slide 28.

(b) Fill in the details for the concluding inquality on slide 30 (using
whatever other facts, inequalities) are given in the proof.

(c) Show precisely where monotonicity is being used in the proof of the
approximation ratio. Conclude that if the submodular function f
was α monotone (for α ≥ 1) then the 1-exchange algorithm would
provide a 1

2α
approximation. Here I define α monotone by the

condition:
f(S) ≤ αf(T ) ∀S ⊆ T

.
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