
CSC 2420 Spring 2015, Assignment 1
Due date: February 11,2016 at start of class

NOTE: If you are taking the course for credit, then you may either work
by yourself or with at most one other student taking the course for credit.
You must specify with whom you are collaborating and the extent of col-
laboration. It is certainly preferable for you to solve the questions without
consulting a published source. However, if you are using a published source
then you must specify the source and you should try to improve upon the
presentation of the result.

1

1. Consider the knapsack problem with input items {(v1, s1), . . . , (vn, sn)}
and capacity C. Without loss of generality the sizes sj of all items are
at most C. Consider the following “natural” greedy algorithms which
initially sorts the input set and then schedules greedily (i.e. takes
the item if it fits). For each algorithm provide input instances which
show that these algorithms will not achieve a c-approximation for any
constant c.
Note: For definiteness, assume all input values are integral which in
principle could make an inapproximation result harder. But here it
should be easy to derive appropriate integral examples.

• Greedy by value: Sort the items Ij = (vj, sj) so that v1 ≥ v2 . . . ≥
vn.

• Greedy by size: Sort the items so that s1 ≤ s2 . . . ≤ sn.

• Greedy by value-density: Sort the items so that v1
s1
≥ v2

s2
. . . ≥ vn

sn

2. Consider the special case of the knapsack problem with vi = si for all
i which we will call the simple or proportional profit knapsack prob-
lem. Specify and analyze a greedy algorithm that provides a constant
approximation for the simple knapsack problem. That is, specify and
prove an approximation ratio.

3. For the knapsack problem, consider the algorithm that returns the max-
imum of “Greedy by value” and “Greedy by value-density” as defined
in question 1. Return the better of the two solutions. Show that this
algorithm is a 2-approximation for the knapsack problem by showing
the following:

• Let item t be the first item that is rejected by Greedy by value
density. That is, when v1/s1 ≥ v2/s2 . . . ≥ vn/sn then

∑t−1
i=1 si ≤

C and
∑t

i=1 si > C where C is the capacity bound. (We can
assume there is such a t since otherwise if all items fit in the
knapsack then any greedy algorithm will be optimal.) Show that∑t

i vi ≥ OPT

• Show how the above fact implies that the algorithm that returns
the maximum of “Greedy by value” and “Greedy by value-density”
is a 2-approximation.

2

4. Consider set packing problem and the “greedy-by-weight-per-size” al-
gorithm. Use a charging argument to show that this algorithm provides
an s approximation for the weighted s-set packing problem.
Show also that this approximation ratio is tight; that is, for every ε > 0,
there is an s-packing problem instance for which the “greedy-by-weight-
per-size” algorithm will result in an approximation ratio no better than
s− ε.

5. Consider Graham’s online greedy makespan algorithm for identical ma-
chines. In the online model, this algorithm has a tight approximation
ratio of 2− 1

m
for m machines. Now consider the same algorithm in the

random order model (ROM). Show that for any ε > 0, and for some m
sufficiently large, the expected approximation ratio of the algorithm is
at least 2− ε. That is, for some m sufficiently large, find a problem in-
stance and an input set {J1, . . . , Jn} such that the expected makespan
(randomizing over the n! possible input orderings) will be at least 2− ε
times larger than the OPT makespan.
Open problem (Or at least I don’t know the answer.) Is there an al-
gorithm for this makespan problem which in the ROM model achieves
an expected approximation ratio no worse than 2 − ε for some fixed ε
and all m.

3

6. Consider the makespan problem in the related machines model where
there are two types of machines, those that run at speed s1 > 1 and
those that run at speed s2 = 1. That is, if a job j with processing time
pj is run on machine i, then it completes in time pj/si. Suppose that
there are only d different processing times. Here we view the number
of machine m as part of the input and not a fixed constant. Provide a
dynamic programming (DP) algorithm with time complexity nO(d) for
computing the value of an optimal makespan solution for this problem
where n is the number of jobs. Specify whatever “semantic array(s)”
you are using and the associated recursive definition for computing the
entries in these arrays. Specify how the desired output is obtained.

7. Consider the following knapsack type problem. We need to place a
subset of n items in a railroad car of integral length C; each item
has the same width and height (that of the car) and different integral
lengths. For delivery purposes, the items chosen for delivery have to
be delivered in the order given. The items are primarily composed of
one of two chemical substances, call them R and B items. To avoid
undesired chemical reactions, between any two R items there must be
a B item. Each R item is valued at $5000 and each B item is valued at
$2000. Place the items in the car (larger indices will be delivered first)
so as to maximize the value of the items placed in the car. Provide a
dynamic programming algorithm with time complexity polynomial in n
and C for this problem. Specify whatever “semantic array(s)” you are
using and the associated recursive definition for computing the entries
in these arrays. Specify how the desired output is obtained.

4

