
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 10

Allan Borodin

March 17, 2016

1 / 21

Announcements and todays agenda

Announcements

1 I have two sets of slides (and expecting a third set) for last weeks guest
lecture (Lecture 8) by Aleksander Nikolov on the use of linear
discrepency in algorithm design. I hope to have them posted by this
weekend.

2 Undergraduate Theory Group Talk by Aleksandar Nikolov - see next
slide

3 Assignment 2 due next Thursday, March 24. There are two small
clarifications.

4 I will begin posting questions soon (by the weekend) for Assignment 3.
It looks like graduate grades are not due until May but I will have to
check with the undergraduate office regarding when those grades are
due. That will determine the due date(s).

Todays agenda

1 Continue with some discussion of extensions of (and questions about)
online bipartite matching.

2 Random walks and k-Sat

2 / 21

Undergraduate Theory Group seminar

Speaker: Aleksandar Nikolov, University of Toronto
Title: A Brief to Introduction to Discrepancy Theory
Abstract: Discrepancy theory is an area of mathematics that studies how
well discrete objects can approximate continuous ones. In this talk we will
introduce some of the main questions of the theory. We will see how low
discrepancy point sets can be used to evaluate complicated integrals, and
how to construct such point sets using balanced colorings. We will then
mention computational questions about discrepancy, and, if time permits,
briefly mention how the same balanced coloring problem can be used in
designing approximation algorithms for NP-hard problems.

3 / 21

Extensions of online bipartite matching

Weighted online matching

Adwords

Some additional ROM model results for problems relating to online
matching

Stochastic matching

Online with Reassignments

4 / 21

The adwords problem: an extension of bipartite
matching

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each advertiser i also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets. Without budgets and when each advertiser will pay for at
most one query, the problem then is edge weighted bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.

5 / 21

Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem. That is, we are ignoring
advertisers strategies for bidding. That is a major topic of interest in
algorithmic game theory given the importance of online search engine
bidding for slots.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005] provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).
Formally they assume that bids arrive online for each query q. When
query q arrives, the bids bq,i for each advertiser i are revealed. The

small bids assumption studies the approximation ratio as
max bq,i
minBi

→ 0
for all bidders (i.e. advertisers) i .

6 / 21

The relatively small bids case

The deterministic greedy algorithm for small bids

Let f (x) = 1− e−(1−x)

When q arrives, match q to the advertiser i maximizing bq,i · f (T (i)).

% Here T (i) =
bq,i
, Bi is the fraction of the budget needed for this query

Break ties consistently, say by vertex ID.

When all bids are in {0, 1} and Bi = B for all i , this is the
B-matching problea;m that is, online bipartitie “matching” when
every offline vertex can be matched to at most B online vertices.

Kalyanasundaram and Pruhs show how to achieve a 1− 1
e

approximation for B-matching as B →∞.

The MSVV extension requires a more careful analysis of the tradeoff
between bids and unspent budget. For their analysis they introduce a
new technique using a “tradeoff revealing family of LPs” related to
the “factor revealing LP” technique of Jain et al [2003] .

7 / 21

Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and B-matching.

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.

As such they provide what is perhaps the first published correct proof
of the KVV result.

8 / 21

Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the ROM
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem becomes the adwords problem when all bids bq,i = bi
from an advertiser i are independent of the query q. .

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Aggarwal et al are able to achieve the same
1-1/e bound for this class of vertex weighted bipartite matching.

Note the similarity to the small bids algorithm.

9 / 21

The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick xv randomly in [0, 1]
Let f (x) = 1− e−(1−x)

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv). Break ties consistently, say by vertex ID.

In the unweighted case when all wv are identical this is the Ranking
algorithm.

10 / 21

The edge weighted algorithm in the ROM model

Kesselheim et al [ESA 2013] show how to extend the ideas of the ROM
secretary algorithm to obtain a 1

e approximation to the edge weighted
biparitite matching problem in the ROM model as well as extending this
idea to set packing (i.e. combinatorial auctions).

An Optimal Online Algorithm for Weighted Bipartite Matching 593

w(e) ∈ R≥0 of its incident edges. Most importantly, the vertices in L are revealed
online and in random order. The algorithm always has to either assign the current
vertex to one of its unmatched neighbors in R, or decide to leave it unassigned.

Our algorithm is a generalization of the classical approach to the secretary
problem. There, a constant fraction of the candidates is ignored. Then, when an
online candidate arrives that is better than all previous ones, it is selected. We
also start by sampling a constant fraction of the vertices on the left-hand side.
Afterwards, whenever a new vertex is presented to the algorithm, we compute
an optimum solution on the revealed part of the graph. If, in this local solution,
the current vertex on the left-hand side is assigned to an unmatched vertex, we
add this edge to our matching.

Algorithm 1. Bipartite online matching
Input : vertex set R and cardinality n = |L|
Output: matching M
Let L′ be the first ⌊n/e⌋ vertices of L;
M := ∅;
for each subsequent vertex ℓ ∈ L− L′ do // steps ⌈n/e⌉ to n

L′ := L′ ∪ ℓ;
M (ℓ) := optimal matching on G[L′ ∪R]; // e.g. by Hungarian method
Let e(ℓ) := (ℓ, r) be the edge assigned to ℓ in M (ℓ);
if M ∪ e(ℓ) is a matching then

add e(ℓ) to M ;

For convenience of notation, we will number the vertices in L from 1 to n in
the (random) order they are presented to the algorithm. Hence, we will use the
variable ℓ synonymously as an integer, the name of an iteration and the name
of the current vertex.

Lemma 1. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, r) assigned to v in M . And let
OPT be the value of a maximum-weight matching in the full graph G. For the
vertices ℓ ∈ {⌈n/e⌉, . . . , n} we have,

E [Aℓ] ≥
⌊n/e⌋
ℓ− 1 · OPT

n
.

Proof. First, we will show that the expected weight of e(ℓ), i.e. of the edge
assigned to vertex ℓ in the matching M (ℓ), is a significant fraction of OPT .
Then, we will analyze the probability of adding this edge to the matching M .

The proof relies on the fact that in any step k of the algorithm the choice of
the random permutation up to this point can be modeled as a sequence of the
following independent random experiments: First choose a set of size k from L.
Then determine the order of these k vertices by iteratively selecting a vertex at
random and removing it. We need this interpretation to exploit the randomness
in each of these experiments separately.

[Kesselheim et al edge weighted biparitite matching algorithm]

11 / 21

Some additional remarks on “online bipartite
matching”

The ROM model subsumes the stochastic model where inputs are
chosen i.i.d. from an unknown distribution (which in turn subsumes
i.i.d. inputs from a known distribution). Why? Hence a positive
result in the ROM model implies a positive result in the i.i.d.
unknown distribution model.

A research problem of current interest (work by Nicolas Pena) is to
see to what extent some form of an extended online framework can
yield a deterministic online bipartite matching algorithm with
approximation ratio better than 1/2.

One can formulate the Buchbinder and Feldman method in the
framework of the priority BT model of Alekhnovich et al. What is the
best approximation acheievable by a deterministic (online or priority)
“poly width” online algorithm BT algorithm?

Pena shows that we cannot obtain a 1
2 + ε algorithm for any “Max-of

k” online algorithm for k = O(log n/ log log n).

12 / 21

Online algorithms allowing reassignments
There is a substantial history of results in scheduling allowing various
forms of preemption. In the same spirit, we can allow online algorithms to
undo previous decisions at some cost or in some limited way.
In particular,

1 As previously discussed, there is a constant approximation “greedy
algorithm” for the weighted interval scheduling problem and the
weighted JISP problem if previously accepted intervals can be deleted.

2 This revocable acceptance model can be applied to any packing
problem where we are always maintaining a feasible solution.

3 Gupta et al [2014] consider the makespan problem in the restricted
machines problem and show that when each job has size 1 (resp.
arbitrary size), an assignment can be maintained that is within twice
(resp. a factor O(log logmn)) of the optimal makespan while using
amortized O(1) reassignments per job.

4 This doesn’t say anything about the maximum matching problem as
to an algorithm that could tradeoff some reassignments for an
improved approximation.

13 / 21

And (for now) some last thoughts relating to online
algorithms

In the online research area, there are various studies of “online
algorithms with advice”. There are two such models, one being that
the online algorithm is initially given some small α(n) bits of advice
bits, based on the entire input.
While certain advice strings seem reasonable (e.g. if they can be
computed easily), the framework here allows any advice string.
Mikkelsen [2015] shows that no deterministic online algorithm with
sublinear o(n) advice can be substantially better than any online
randomized algorithm without advice.
It follows that we cannot obtain anything substantially better than a
(1− 1

e) apprroximation for online unweighted bipartite matching with
o(n) advice.
By a result of Bockenhauer [2011] there is an online algorithm using
O(log n) advice that achieves a (1− ε)(1− 1

e) approximation for
unweighted bipartite matching, thus matching what is the best
possible approximation with o(n) advice.

14 / 21

Last online thoughts continued

Any online r bit advice algorithm immediately implies a non-uniform
max-of-2r online algorithm.

Pena’s inapproroximation about the limitation of max-of-k online
algorithms for bipartite matching can then be used to show that
Ω(log log n) advice is needed to achieve an approximation better than
1
2 + ε.

Pena’s advice result improves upon a more restricted setting showing
that Ω(log log log n) advice is needed.

These resuls show why it will be hard to prove inapproximation results
about poly width online algorithms for bipartite matching.

15 / 21

Random walks and the random algorithm for 2-Sat
and k-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .
There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).
Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi) = 1− τ(xi).

16 / 21

The expected time to reach a satisfying assignment
When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.
17 / 21

The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

18 / 21

Stationary distributions
Define qt = (qt1, q

t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi .
19 / 21

Back to random walks on graphs
Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula. Can use
Markov inequality to obtain probability of not finding satisfying
assignment. 20 / 21

Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). Or we could view the approach as
a local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

21 / 21

Schöning’s k-SAT algorithm
The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e)c .

22 / 21

