
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 6

Allan Borodin

February 25, 2016

1 / 1

Announcements and todays agenda
Announcements

1 Assignment 1 is graded and being returned today. One person did not
provide their name! The assignment was marked out of 90 and the
average was 73/90 ≈ 81% and the median was 75/90 ≈ 83 . Even if
you did not do well, there is plenty of time to improve your grade.

2 A couple of people wound up searching the internet and finally found a
paper that solved the ROM question. I was totally surprised to find that
someone actually wrote a paper on this one observation. BUT in terms
of learning, this isn’t the most productive way to spend your time.

3 I had hoped to start Assignment 2 over reading week but didn’t. I will
post some initial questions by the weekend.

4 There was a talk today relating to AGT (algorithmic game theory).
Tomorrow he will be meeting with graduate students between 4 and
5:30 in the theory lab, SF 4302

5 Tomorrow at 11, Mark Bun will be speaking at 11 in WB 119. The
topic is differential privacy.

Todays agenda
1 Continue discussion of LP Duality
2 Start randomized algorithms

2 / 1

Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:

I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:

I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.

3 / 1

An example: set cover
As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj xj ≥ 1 for all i ; that is, ei ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.

4 / 1

Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will initially assume the primal is a minimization
problem to simplify the exposition.

5 / 1

Strong and Weak Duality
Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound.

6 / 1

Motivating duality
Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual (with solution
(y1, y2) = (2, 1) must be 26.

7 / 1

Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi)yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x

8 / 1

Max flow-min Cut in terms of duality
While the max flow problem can be naturally formulated as a LP, the
natural formulation for min cut is as an IP. However, for this IP, it
can be shown that the extreme point solutions (i.e. the vertices of the
polyhedron defined by the constraints) are all integral {0,1} in each
coordinate. Moreover, there is a precise sense in which max flow and
min cut can be viewed as dual problems. This is described nicely in
Vazarani (section 12.2).
In order to formulate max flow in standard LP form we reformulate
the problem so that all flows (i.e. the LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows)
we add an edge of infinite capacity from the terminal t to the source
s and hence define a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E

9 / 1

Max flow-min cut duality continued
For the primal edge capacity constraints, introduce dual (“distance”)
variables di ,j and for the vertex flow conservation constraints, introduce
dual (“potential”) variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i)}
be an intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1; p∗t = 0.
The IP optimum then defines a cut (S ,T) with S = {i |p∗i = 1} and
T = {i |p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first
constraint forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut.

10 / 1

Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.

Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.

As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.

We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.

11 / 1

Primal dual for f -frequency set cover continued
Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.

12 / 1

Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .

13 / 1

Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm
We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .

14 / 1

The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).

15 / 1

Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei)/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.

16 / 1

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.

17 / 1

Dual fitting applied to a maximization problem

Krysta [2005] applies dual fitting approach to a maximization problem,
namely to analyze (in my terminology) fixed order prioriity algorithms
(such as the Lehman et al [1999] greedy 2

√
m approximate set packing

algorithm) for generalizations of the weighted set packing problem (which
can be used to formulate many natural integer packing problems).

Generalized Set Packing

As in weighted set packing, we have a collection of sets S ∈ S over some
universe U. Each set has a weight wS . Now we allow sets to be multi-sets
and let q(u,S) to be the number of copies of u ∈ S . Furthermore, we also
allow each element u ∈ U to have some maximum number bu of copies
that can occur in a feasible solution (in contrast to the basic set packing
problem where bu = 1 for all u ∈ U).
The goal is to select a subcollection C of sets satisfying the feasibility
constraints on the {bu} so as to maximize the sum of the weights of the
sets in C.

18 / 1

The natural IP and LP relaxation

The natural IP/LP

max
∑

S∈S wSxS

subject to
∑

S :u∈S q(u,S)xS ≤ bu ∀u ∈ U

xS ∈ {0, 1}
In the LP relaxation, the {0,1} constraint becomes 0 ≤ xS ≤ 1}
NOTE: Unlike set cover, for set packing the condition xS ≤ 1 is necessary

The minimization dual

min
∑

u∈U buyu +
∑

S∈S zS

subject to zS +
∑

u∈S q(u, S)yu ≥ wS ∀S ∈ S
zS , yu ≥ 0

NOTE: The dual variable zS corresponds to the constraint xS ≤ 1

19 / 1

The secretary problem as an LP

We recall the classical secrtary problem (defined in Lecture 2) which is to
maximize the probability of choosing the best candidate from N candidates
that arrive in random order. Bucnbinder, Kain and Singh [2010] show how
to view the classical secretary problem (and many generalization) as an LP
maximization problem with the following benefits:

1 Finding an optimal mechanism reduces to solving a specific linear
program

2 Proving that 1
e is the best bound possible reduces to finding a

solution to the dual of the LP.

3 This approach facilitates the analysis of many generalizations of the
secretary problem (i.e. by adding additional constraints or modifying
the objective function).

4 One of the generalizations is to obtain a truthful mechanism whereby
agents (i.e. candidates) have no incentive to seek a particular place in
the ordering (and hence making a random order more meaningful).

20 / 1

The LP for the classical secretary problem

The primal LP P

max 1
n

∑N
i=1 i · pi

subject to: i · pi ≤ 1−
∑i−1

j=1 pj 1 ≤ i ≤ N

pi ≥ 0

The dual LP D
min

∑N
i xi

subject to:
∑N

j=i+1 xj + i · xi ≥ i
N 1 ≤ i ≤ N

xi ≥ 0

21 / 1

Sketch of LP characterization

To prove that this LP captures the secrtary problem one needs to prove:

If M is any mechanism and pMi is the probability that M selects the
candidate in position i . Then {pMi } is a feasible solution for the primal
P and Prob[M selects best candidate] ≤ the objective value of P
Let {pi} be any feasible solution of P. Then the following mechanism
M obtains the objective function of P:
Select candidate i with probability i ·pi

(1−
∑

j<i pj)
if the first i − 1

candidates have not been selected and i is best so far.

Furthermore, to prove an upper bound (namely 1
e + o(1)) on the best

performance (i.e. best probability), it suffices to construct a feasible
solution {xi} for the dual D with dual objective value 1

e .

Setting xi = 0 for 1 ≤ i ≤ N/e and xi = 1
N (1−

∑N
j=i

1
j) for

n/e < i ≤ N is a feasible dual solution with value 1
e .

22 / 1

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.

23 / 1

A primal dual algorithm with reverse delete :
the weighted vertex feedback problem

The vertex feedback problem

Given a graph G = (V ,E), a feedback vertex set (FVS) F is a subset of
vertices whose removal will make the resulting graph acyclic. That is, if
S = V − F , then G [S] = (S ,E [S]) is acyclic where G [S] is the graph
induced by S .

The (weighted) feedback vertex set problem is to compute a
miniumm size (weight) feedback vertex set.

The problem (i.e. in its decision version) was one of Karp’s original
NP complete problems. It has application to circuit design and
constraint satisfaction problems. It is as hard as vertex cover.

An obvious IP for this problem would have the constraints∑
v∈C xv ≥ 1 for every cycle C in the graph. Not only is this possibly

an exponential size IP (which might not be a problem), it is known
that the integrality gap is Θ(log |V |).

24 / 1

An alternative IP/LP for the FVS problem

Chudak et al [1998] provide primal dual interpretations for the
2-approximation algorithms due to Becker and Geiger [1994] and
Bafna, Berman, Fujito [1995]. In the primal dual interpretations, both
algorithms use almost the same IP representation and method for
raising dual variables.

The basic fact underlying the IP representations is the following:

Fact

Let d(v) be the degree of v , b(S) = |E [S]| − |S |+ 1 and τ(S) = the size
of a minimal feedback set for G [S]. Then if F is any FVS, and E [S] 6= ∅
then

1
∑

v∈F [dS(v)− 1] ≥ b(S) for all S ⊆ V and hence

2
∑

v∈F dS(v) ≥ b(S) + τ(S)

25 / 1

Primal dual for FVS continued

The IP/LP and the resulting primal dual algorithm is a little easier to state
for the Berger and Geiger algorithm but the analysis is perhaps a little
simpler for the Bafna et al. algorithm. Here is the formulation for the
Berger and Geiger algorithm:

Primal for Berger and Geiger algorithm

P: minimize
∑

v∈V wvxv
subject to

∑
v∈S dS(v)xv ≥ b(S) + τ(S) for all S ⊆ V with E [S] 6= ∅

IP: xv ∈ {0, 1} LP: xv ≥ 0

The dual

D: maximize
∑

S(b(S) + τ(S))yS
subject to

∑
S :v∈S dS(v)yS ≤ wv for all v ∈ V

yS ≥ 0 for all S ⊆ V with E [S] 6= ∅

Note: These are exponential size LPs but that will not be a problem.

26 / 1

Primal dual for Berger and Geiger

yv = 0 for all v ; ` := 0;F := ∅
V ′ := V ;E ′ := E
While F is not a FVS for (V ′,E ′)
` := `+ 1
recursively remove all isolated vertices and degree 1 vertices and incident

edges from (V ′,E ′)
S := V ′ In the Bafna et al algorithm S is not always set to V ′

Increase yS until ∃v` ∈ S :
∑

T :v`∈T dT (S)vT = wv`

F := F ∪ {v`}
Remove v` from V ′ and all incident edges from E ′

End While
For j = `..1 % This is the reverse delete phase

If F − {vj} is an FVS then F := F − {vj}
End If

End For

27 / 1

Comments on the primal dual for Berger and Geiger
algorithm

The algorithm as originally stated shows how to efficiently find a v` so
as to make the the dual constraint tight; namely let
v` = argminv∈Swv/dS(v`) and let ε = wv`/dS(v`). Then εdS(u) is
subtracted from wu for all u ∈ S .

It is easy to verify that any FVS is a solution to the primal and
conversely any IP solution is an FVS.

It is immediate that the F computed is an (integral) FVS since the
While condition forces this.

The analysis shows that for the dual LP constructs a feasible
fractional {yS} solution satisfying:∑

v∈F wv ≤ 2
∑

S(b(S) + τ(S))− 2
∑

S yS ≤ 2
∑

S(b(S) + τ(S))

Therefore, the primal dual algorithm is a 2-approximation algorithm.

The integrality gap is then at most 2 and this is known to be tight. It
is also interesting to note that the dual objective function cannot be
efficiently evaluated since τ(S) is the optimal FVS value for G [S].

28 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (jn the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

29 / 1

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (jn the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

29 / 1

The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be derandomized, there is often
conceptual insight to be gained from the initial randomized algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms is that the probability
of success can be amplified by repreated independent trials of the
algorithm.

30 / 1

Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

31 / 1

Polynomial identity testing
The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.
Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact
that a univariate polynomial of degree d can have at most d zeros.

32 / 1

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm the
determinant can be computed in O(n2.38) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

33 / 1

The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.

34 / 1

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

35 / 1

Derandomizing the naive algorithm
We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed so that it fits (say) the
priority formulation for an online algorithm? 36 / 1

