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Announcements and todays agenda

Announcements

1 Assignment 1 due today. I will go over any questions on the
assignment.

2 I hope to start Assignment 2 over reading week. In any case enjoy
reading week.

Todays agenda

1 Begin linear programming and rounding
2 LP Duality
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Discussion of question 5 in problem set 1

Proof sketch for question 5.
We want to argue that that Graham’s algorithm for makespan does
not achieve 2− c for any constant c > 0 in the ROM model. For a
fixed k , take the instance with m(m − k) ‘1’ values and k ‘m’ values.
The expected position for the last occurence of m is at the k/(k + 1)
th fraction of the input. So the value obtained by the algorithm is
about k

(k+1) ∗ (m − k) + m whereas the OPT is m. This gives a ratio
which is more than 2− c if k is sufficiently large and m >> k .
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Discussion of question 6 on problem set

Proof sketch for question 6.
We want to proceed just like we did for the case of the identical
machine model. First as before we will use binary search to hone in on
the optimal value of the makespan. So now lets see how we determine
whether or not the given set of jobs can be scheduled within
makespan (say) T while using m1 machines with speed 1 and m2 with
speed s1. We let V1 be the set of configurations that can complete on
a machine with speed 1, and V2 be the set of configurations that can
complete on a machine with speed with speed s1. Now we define our
DP matrix M[x1, . . . , xd ] = (min t; t = `1 + `2 and we can schedule xi
jobs of size zi within makespan T using `1 machines with speed 1 and
`2 machines with speed s1. Now the recursive definition of M consists
of choosing a machine type and all possible configuations that can be
packed into the machine within makespan T .
There are some details to be worked out but I claim that this idea can
be made to provide the desired algorithm.
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Integer Programming (IP) and Linear Programming
(LP)

We now introduce what is both theoretically and in practice one of
the most general frameworks for solving search and optimization
problems. Namely, we consider how many problems can be
formulated as integer programs (IP). (Later, we will also consider
other mathematical programming formulations.)
Solving an IP is in general an NP hard problem although there are
various IP problems that can be solved optimally. Moreover, in
practice, many large instances of IP do get solved.
Our initial emphasis will be on linear program (LP) relaxations of IPs.
LPs can be solved optimally in polynomial time as first shown by
Khachiyan’s ellipsoid method [1979] and then Karmarkar’s‘ [1984]
more practical interior point method. In some (many?) cases,
Danzig’s [1947] simplex method will outperform (in terms of time)
the worst case polynomial time methods.
Smoothed analysis gives an explanation for the success of simplex.
Open: a strongly polynomial time algorithm for solving LPs?
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Some IP and LP concepts

Integer Programs

An IP has the following form:

Maximize (minimize)
∑

j cjxj

subject to (
∑

j aijxj)Ribi for i = 1, . . . ,m
and where Ri can be =,≥,≤
xj is an integer (or in some prescribed set of integers) for all j

Here we often assume that all parameters {aij , cj , bi} are integers or
rationals but in general they can be real valued.

An LP has the same form except now the last condition is realized by
letting the xj be real valued. It can be shown that if an LP has only
rational parameters then we can assume that the {xj} will be rational.

6 / 1



Canonical LP forms

Without loss of generality, LPs can be formulated as follows:

Standard Form for an LP

Maximize c · x Minimize c · x
subject to A · x ≤ b A · x ≥ b

x ≥ 0 x ≥ 0

Slack form

maximize/minimize c · x
subject to A · x + s = b

x ≥ 0; s ≥ 0

The {sj} variables are called slack variables.
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LP relaxation and rounding

One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational suffice) variables.

We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E ) with a weight
function w : V → <≥0. To simplify notation let the vertices be
{1, 2, . . . .n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj ≥ 1 for every edge (i , j) ∈ E
I xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex j is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.

Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.
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LP rounding for the natural vertex cover IP

The “natural LP relaxation” then is to replace xj ∈ {0, 1} by
xj ∈ [0, 1] or more simply xj ≥ 0 for all j .

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an IP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x∗ and create an integral solution x̄ as
follows: x̄j = 1 iff x∗j ≥ 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover). Why?
2

∑
j wj x̄j ≤ 2 ·

∑
j wjx

∗
j ≤ 2 · IP-OPT ; that is, the LP relaxation results

in a 2-approximation.
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The integrality gap

Analogous to the locality gap (that we encountered in local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP−OPT
LP−OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .
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Integrality gaps and approximation ratios
When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative (i.e. lower) bound (say c ′) on the
integrality gap then this is only a result about the given IP/LP. In
practice we tend to see an integrality gap as strong evidence that this
particular formulation will not be able to result in a better than c ′

approximation. Indeed I know of no natural example where we have a
lower bound on an integrality gap and yet nevertheless the IP/LP
formulation leads “directly” into a better approximation ratio.
In theory some conditions need to be established to make this into a
provable statement. For the VC example, the rounding was
independent (for each variable) and “oblivious” (to the input graph).
In contrast to the Kn input, the LP-OPT and IP-OPT coincide for an
even length cycle. Hence this intergrality gap represents a tight
bound on the formulation using a graph oblivious rounding. 11 / 1



Makespan for the unrelated and restricted machine
models: a more sophisticated rounding

In the VC example I use the terms “(input) independent rounding” and
“oblivious” rounding.)

We now return to the makespan problem with respect to the unrelated
machines model and the special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.
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The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.
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Adapting the natural IP

As in the PTAS for the identical machine makespan PTAS, we use
binary search to find an appropriate approximation T for the optimal
makespan.

Given a candidate T , we remove all xji such that pj ,i > T and obtain
a “search problem” (i.e. constant or no objective function) for finding
xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, the LST
algorithm then shows how to use a non-independent rounding to
obtain an integral solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an intergral solution.
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Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible bounded LP with m + n constraints (not counting the
non-negativity constraints for the variables) then L has an optimal
basic solution such that at most n + m of the variables are non-zero.

It follows how? that there are at most m of the n jobs that have
fractional solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.
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The rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a matching
of size y . Note, of course, this is what makes the “rounding”
non-independent .

The existence of this matching requires more LP whereby it can be
shown (LST credit Dantzig [1963]) that the connected components of
the bipartite graph are either trees or trees with one added edge (and
therefore causing a unique cycle).

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed a makespan at
most T before assigning the fractional jobs.
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The restricted machine makespan problem
The restricted machines model is a special case of the unrelated
machines problem where for every job j , pj ,i ∈ {pj ,∞}. Hence the
LST 2-approximation applies.
LST show that it is NP hard to do better than a 1.5 approximation
for the restricted machines (and hence unrelated machines) problem.
Shmoys shows that for the special case that pj ∈ {1, 2} that the
problem can be solved in polynomial time.
There is a relatively new (somewhat strange) result due to Svensson
[2011]. He shows how to approximate the value of the optimum
makespan to within a factor of 33/17 ≈ 1.9413 < 2. This is proven
constructively by a local search algorithm satisfying the
approximation. However, the local search is not shown to terminate in
polynomial time.
Note that if we could determine the optimal makespan value in
polynomial time, then we can also find an optimal solution in
polynomial time. However, the same cannot be said when we are only
approximating the makespan value.
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The special case of graph orientation

Consider the special case when there are (at most) two allowable
machines for each job. This is called the graph orientation problem.

It turns out easier to reason about the LP rounding applied to the
graph orientation problem for the given IP/LP but still the integrality
gap is 2.

A more refined IP/LP by Eveblendr, Krcal and Sgall [2008] achieves a
1.75 approximation for the graph orientation problem.

Even for the case when each job can only be scheduled on at most 3
machines, beating the 2-approximation remains an open problem.
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Some concluding remarks (for now) about LP
rounding

We will return later to more LP applications. There are some nice
notes by Allan Jepson providing some of the geometric concepts
underlying LP solutions. (Note: these slides are password protected
but I will provide password in class.)
http://www.cs.toronto.edu/ jepson/csc373/index2012.html
There can be, of course, many different IP/LP formulations for a
given problem. In particular, one often adds additional constraints so
that the polytope of the LP solutions is smaller.
For example, in the vertex cover LP, one could simply add constraints
xi + xj + xk ≥ 2 for every triangle in the graph and more generally,
constraints for every odd length cycle. (These inequalities do not
essentially change the integrality gap.)
Adding such constraints corresponds to one round of what is called
the LS lift and project method.
There are a number of lift and project methods. If you are interested,
then consult our local expert Toni Pitassi.
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Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:

I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:

I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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An example: set cover
As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj xj ≥ 1 for all i ; that is, ei ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.
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Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.
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Strong and Weak Duality
Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound.
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