
CSC2420 Spring 2016: Lecture 2

Allan Borodin

January 21,2016

1 / 1

Announcements and todays agenda
First part of assignment 1 was posted last weekend. I plan to assign
more questions as we discuss additional topics. Please try to work on
the questions week by week and not postpone until the due date. I
will set due date for assignment 1 after I assign more questions.
I try to post the slides within a day or so of the lecture and usually
post what was discussed. Some times I will post all the intended
slides for context.
Todays agenda

1 Review and continue discussion of the set packing problem.
2 Sketch s-set packing greedy algorithm analyis
3 Abstraction of s-set packing to (s + 1)-claw free graphs.
4 State O(

√
m)-approximationi for set packing.

5 Priority algorithms with revocable acceptances (for packing problems).
The “greedy” algorithm for weighted interval scheduling (WIS) and
weighted job interval scheduling problem (WJIS).

6 Abstraction of WIS (resp. WJIS) to max independent set in chordal
graphs and (respectively) inductive 2-independent graphs.

7 Priority stack algorithms.
8 The random order model. (ROM) 2 / 1

Greedy algorithms for the set packing problem

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing, there is an Ω(s/ log s) hardness of
approximation assuming P 6= NP.

Set packing is the underlying allocation problem in what are called
combinatorial auctions as studied in mechanism design.

We will consider two “natural” greedy algorithms for the s-set
packing problem and a somewhat less obvious greedy algorithm for
the set packing problem. These greedy algorithms are all fixed order
priority algorithms.

3 / 1

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt)

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument.

4 / 1

Two types of approximation arguments

Recall the argument for makespan on identical machines.
1 We identify some intrinsic limiting bounds for any solution including an

OPT solution; in this case average load/machine and processing time
for any job.

2 Then we relate the algorithmic solution (in this case the natural greedy
solution) to those bounding factors.

3 We will see something similar when consider “LP rounding”.

We now consider a different type of argument. Namely a charging
argument.

We will consider this in the context of a maximization problem,
namely the charging argument for Greedywt for s-set packing.

1 We will charge the weight of every set in an OPT solution to the first
set in the greedy solution with which it intersects.

2 How many sets in OPT can be charged to the same set in Greedywt?
3 If say set Si ∈ OPT is being charged to Sj ∈ Greedywt , then we know

wi ≤ wj .

5 / 1

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, greedy-by-weight-per-size is only an m-approximation
where m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an min{n,m}-approximation.

6 / 1

Improving the approximation for greedy set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is essentially the best possible approximation assuming NP 6= ZPP.
7 / 1

Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedywt
applied to sets of cardianlity at most

√
m/k . Set PGreedyk to be the best

of Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .

8 / 1

(k + 1)-claw free graphs

A graph G = (V ,E) is (k + 1)-claw free if for all v ∈ V , the induced
subgraph of Nbhd(v) has at most k independent vertices (i.e. does not
have a k + 1 claw as an induced subgraph).

(k + 1)-claw free graphs abstract a number of interesting applications.

In particular, we are interested in the (weighted) maximum
independent set problem (W)MIS for (k + 1)-claw free graphs. Note
that it is hard to approximate the MIS for an arbiitrary n node graph
to within a factor n1−ε for any ε > 0.

We can (greedily) k-approximate WMIS for (k + 1)-claw free graphs.

The (weighted) k-set packing problem is an instance of (W)MIS on
k + 1-claw free graphs. What algorithms generalize?

There are many types of graphs that are k + 1 claw free for small k;
in particular, the intersection graph of translates of a convex object in
the two dimensional plane is a 6-claw free graph. For rectangles, the
intersection graph is 5-claw free.

9 / 1

Extensions of the priority model: priority with
revocable acceptances

For packing problems, we can have priority algorithms with revocable
acceptances. That is, in each iteration the algorithm can now reject
previously accepted items in order to accept the current item.
However, at all times, the set of currently accepted items must be a
feasible set and all rejections are permanent.

Within this model, there is a 4-approximation algorithm for the
weighted interval selection problem WISP (Bar-Noy et al [2001], and
Erlebach and Spieksma [2003]), and a ≈ 1.17 inapproximation bound
(Horn [2004]). More generally, the algorithm applies to the weighted
job interval selection problem WJISP resulting in an 8-approximation.

The model has also been studied with respect to the proportional
profit knapsack problem/subset sum problem (Ye and B [2008])
improving the constant approximation. And for the general knapsack
problem, the model allows a 2-approximation.

10 / 1

The Greedyα algorithm for WJISP
The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S s.t. (S/Ci) ∪ {Ii} feasible
if v(Ci) ≤ α · v(Ii) then

S := (S/Ci) ∪ {Ii}
end if

END FOR

Figure : Priority algorithm with revocable acceptances for WJISP

The Greedyα algorithm (which is not greedy by my definition) has a tight
approximation ratio of 1

α(1−α) for WISP and 2
α(1−α) for WJISP.

11 / 1

Priority Stack Algorithms
For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is insure the minimality of the
solution; that is, while popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.

12 / 1

Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence is chordal) by ordering the intervals such that
f1 ≤ f2 . . . ≤ fn. Using this ordering we know that there is a greedy (i.e.
priority) algorithm that optimally selects a maximum size set of non
intersecting intervals. The same algorithm (and proof by charging
argument) using a PEO for any chordal graph optimally solves the
unweighted MIS problem. The following priority stack algorithm provides
an optimal solution for the WMIS problem on chordal graphs.

13 / 1

The optimal priority stack algorithm for the
weighted max independent set problem (WMIS) in
chordal graphs; Akcoglu et al [2002]

Stack := ∅ % Stack is the set of items on stack
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
For i = 1..n

Ci := nodes on stack that are adjacent to vi
If w(vi) > w(Ci) then push vi onto stack, else reject

End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure : Priority stack algorithm for chordal WMIS
14 / 1

A k-PEO and inductive k-independent graphs

An alternative way to describe a PEO is to say that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number 1.

We can generalize this to a k-PEO by saying that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number at most k .

We will say that a graph is an inductive k-independent graph if it has
a k-PEO.

Inductive k-independent graphs generalize both chordal graphs and
k + 1-claw free graphs. They also obviously generalize inductive
degree k which contains all “treewidth k” graphs.

The intersection graph induced by the JISP problem is an inductive
2-independent graph.

Using a k-PEO, a fixed-order priority algorithm (resp. a priority stack
algorithm) is a k-approximation algorithm for MIS (resp. for WMIS)
wrt inductive k-independent graphs.

15 / 1

More extensions of the priority model

So far we have been implicitly assuming deterministic priority
algorithms. We can allow the ordering and/or the decisions to be
randomized.

A special case of fixed priority with randomized orderings is when the
input set is ordered randomly without any dependence on the set of
inputs. In the online setting this is called the random order model.

The revocable acceptances model is an example of priority algorithms
that allow reassignments (of previous decisions) to some extent or at
some cost.

The partial enumeration greedy is an example of taking the best of
some small set of adaptive priority algorithms.

Priority stack algorithms are an example of 2-pass (or multi-pass)
priority algorithms where in each pass we apply a priority algorithm.
Of course, it has to be well specified as to what information can be
made available to the next pass.

16 / 1

The random order model (ROM)

Motivating the random order model

The random order model provides a nice compromise between the often
unrealistic negative results for worst case (even randomized) online
algorithms and the often unrealistic positive setting of inputs being
generated by simple distributions.

In many online scenarios, we do not have realistic assumptions as to
the distributional nature of inputs (so we default to worst case
analysis). But in many applications we can believe that inputs do
arrive randomly or more precisely uniformly at random.

The ROM can be (at least) traced back to what is called the
(classical) secretary (aka marriage or dowry) problem, popularized in
a Martin Gardner Scientific American article.

As Fiat et al (SODA 2015) note, perhaps Johannes Kepler
(1571-1630) used some secretary algorithm when interviewing 11
potential brides over two years.

17 / 1

The secretary problem

The classical problem (which has now been extended and studied in many
different variations is as follows:

The classic problem (as in the Gardiner article) assumes an
adversarially chosen set of distinct values for (say N) items that arrive
in random order (e.g. candidates for a position, offers for a car, etc.).
N is assumed to be known.

Once an item (e.g. secretary) is chosen, that decision is irrevocable.
Hence, this boils down to finding an optimal stopping rule, a subject
that can be considered part of stochastic optimization.

The goal is to select one item so as to maximize the probability that
the item chosen is the one of maximum value.

For any set of N values, maximizing the probability of choosing the
best item immediately yields a bound for the expected (over the
random orderings) value of the chosen item. For an “ordinal
algorithm”, these two measures are essentially the same. Why?

18 / 1

The secretary problem continued

It is not difficult to show that any deterministic or randomized
(adversarial order) online algorithm has competitive ratio 1 at most
O(1

N). Hence the need to consider the ROM model to obtain more
interesting (and hopefully more meaningful) results.

We note (and this holds more generally) that “positive results” for
the ROM model subsume the stochastic optimization scenario where
inputs are generated by an unknown (and hence known) i.i.d. process.
Why?

There are many variations and extensions of the secretary problem
some of which we will consider later (or at least mention).

In general, any online problem can be studied with respect to the
ROM model.

1Recall that for maximization problems, competitive and approximation ratios can
sometimes presented as fractions α = ALG

OPT
≤ 1 and sometimes as ratios c = OPT

ALG
≥ 1. I

will try to follow the convention mainly used in each application.
19 / 1

The optimal stopping rule for the classical secretary
problem

The amusing history of the secretary problem and the following result is
taken up by Ferguson in a 1989 article.

Theorem: For N and r , there is an exact formula for the probability of
selecting the maximum value item after observing the first r items, and
then selecting the first item (if any) that exceeds the value of the items
seen thus far. In the limit as N →∞, the optimal stopping rule is to
observe (i.e. not take) the first r = N/e items. The probability of
obtaining the best item is then 1/e and hence the expected value of the
item chosen is at least 1

e vmax .

20 / 1

Variations and extensions of the secretary problem

Instead of maximizing the probability of choosing the best item, we
can maximize the expected rank of the chosen item.

Perhaps the most immediate extension is to be choosing k elements.

This has been generalized to the matroid secretary problem by
Babaioff. For arbitrary matroids, the approximation ratio remains an
open problem.

Another natural extension is to generalize the selection of one item to
the online (and ROM) edge weighted bipartite matching problem,
where say N = |L| items arrive online to be matched with items in R.
In online matching the goal is usually to maximize the size (for the
unweighted case) or weight of a maximum matching.

I will next to discuss online matching and then later (hopefully) the
extension to the adwords problem where the online nodes L represent
advertisers/bidders with budgets and preferences/values for the R
nodes representing keywords/queries.

21 / 1

The unweighted bipartite matching problem

Before leaving (for now) online, ROM and priority algorithms, I want to
briefly discuss one more (surprising) ROM algorithm (equivalently for this
algorithm, a randomized online algorithm) that has generated a good deal
of recent research.

Let G = (U,V ,E) be an unweighted bipartite graph with edges
E ⊂ U × V . Lets say that the vertices in U are the online vertices
that arrive one at a time u1, . . . un, revealing the offline nodes in V to
which they are adjacent.

The online algorithm must irrecvocably decide whether and how to
match ui to an unmatched v ∈ V (if there is such a node).

It is easy to see that any greedy algorithm (i.e. one that matches
each ui if possible) produces a maximal matching and hence is a
1
2 -approximation (following the convention here for using fractional
approximation ratios). This is also a tight bound for any deterministic
online algorithm as can be seen by a simple 2× 2 bipartite graph.

22 / 1

The Karp, Vazirani, Varizani (KVV) algorithm

The KVV Ranking algorithm chooses a random permutation of the
nodes in V and then when a node u ∈ U appears, it matches u to the
highest ranked unmatched v ∈ V such that (u, v) is an edge (if such
a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

The analysis of this algorithm can be used to show that there is a
deterministic greedy algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.

23 / 1

The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) ≈ .63 approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and other proofs (e.g. in Birnbaum and Mathieu [2008]).

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727.

24 / 1

