CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

Allan Borodin

April 7, 2016; Lecture 12

/26



Annoucements and Todays Agenda

@ Announcements

© The due date for Assignment 3 has been extended to noon, Monday,
April 18. | am not here next week burt will be back in the office on
Monday, the 18th. You can email the assignment if your wish. If
submitting hard copy, please beign to my office SF 2303B and place
under door if | am nort there.

@ If you are an undergraduate planning to graduate this term, then please
email me so that | can be sure that your assignments are graded first
and a grade is calculated in time for you to graduate.

© | must leave early today so we will lecture without a break today.

@ Todays agenda

@ Brief Introduction to spectral methods
@ If time permits a very brief discussion of factor revealing LPs
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A brief introduction to spectral methods

Like other topics in the course, spectral methods and in particular
spectral graph theory and spectral graph algorithms is really a topic in
itself.

Spectral methods are becoming more and more important with
applications to many areas of research.

When we say spectral method, we mean algorithmic methods relying
on the eigenvalues and eigenvectors of a matrix. In particular, we will
just highlight some results relating to matrices coming from
undirected graphs.

One of the most active and influential researchers in this area is Dan
Spielman. His Fall, 2015 course notes on spectral graoh theory can be
found at http://www.cs.yale.edu/homes/spielman/561/. | have
posted a tutorial by Dan Spielman on the course web page.

| will just briefly introduce some terminology and give a glimpse of
some applications of spectral graph theory. Spielman’s course notes
and tutorial will, of course, provide many further applications.
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Spectral graph theory

@ For undirected graphs, the adjacency matrix A(G) of a graph G is a
real symmetric matrix.

@ A non-zero (column) vector x is an eigenvector of A with eigenvalue
Aif Ax = Ax.

@ The spectrum of A or a graph G refers to the set of eigenvalues of A
(resp A(G).

@ When A is a real symmetric matrix, then all the eigenvalues are real
and there is an orthonormal basis of R" consisting the eigenvectors of
A. That is, the eigenvectors are orthogonal to each other and each
normalized to length = 1.

@ The question is what useful information about a graph can the
spectrum provide?
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The Laplacian

In spectral graph theory, it is often better to consider the Laplacian of
a graph which is defined as L(G) = D(G) — A(G) where D(G) is the
diagonal matrix whose entries are the degrees of the vertices.

In particular if G were d regular, then any eigenvector of A(G) with
eigenvalue \ is an eigenvector of L(G) with eigenvalue d — A\ and vice
versa.

The nice property of the Laplacian L(G) is that it is a positive
semi-definite matrix which means that all its eigenvalues are
non-negative.

Furthermore, G is connected if and only if A = 0 is an eigenvalue of
L(G) with multiplicity 1. More generally, G has k connected
components iff 0 is an eigenvalue of multiplicity k.

Why is this interesting? Ordering so that A\; < Ax... < A,, we can
think of the two smallest eigenvalues being close iff the graph is
“close” to being disconnected iff there is a “sparse cut”.
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Sparse cuts

@ Recall that a cut in a graph G = (V/, E) is a partition of the vertices
Viinto S and V' \ S (or equivalently the cut set of edges , that is,
cut(S) ={e=(u,v)lue S,ve V\S}).

@ We previously discussed min cuts in a graph and how they can be
optimally computed using the the max flow-min cut theorem and
(say) a Ford Fulkerson based algorithm. (For edge weighted graphs,
Ford Fulkerson computes a cut of minimum weight.)

@ Our goal now is to produce “balanced sparse cuts”’. That is, we want
to view the size of a cut relative to the sizes of S and V' \ S. Such
balanced cuts have applications to algorithms that work by
decomposing a graph into roughly equal parts.

@ The conductance ¢(S) of a set S is defined as:

cut(S
min{vo/‘(S;,(vo))(V\S)} where vol(S) = > .5 degree(u).
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Conductance

@ Sometimes conductance is defined as gﬁté@‘ These quantities are

within a factor of 2.

@ The conductance ¢(G) of a graph is the ming,|sj<,/2 #(S).
Computing the conductance of a graph is a well studied formulation
of the sparsest cut problem. It is NP-hard and the best known
approximation for about 15 years was the Leighton Rao O(log |V/|) for
about 15 years and then improved by Arora, Leighhton and Rao to

O(y/log| V).
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Cheeger’s Inequality

Cheeger's inequality has been called the most important result in spectral

graph theory.

@ To state this result it is useful to consider the following normalized
adjacency and Laplacian matrices:
A = D7Y2ADY2 and L' = D=Y/2LD~1/2

@ Here D~1/2 is the diagonal matrix with diagonal entries
d; ; = degree(v;) "/

o Letting {a;} (resp. \}) denote the eigenvalues of A’ (resp. L), it
follows that

1> >az...>ap,>-1land 0=)M] < )\,... <\ <2
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Cheeger’s inequality continued

@ The spectral gap is the difference bewteen «; and ap (or between A
and \}).

@ The spectral gap is closely related to conductance as well as the
graph expansion properties and random walk properties.

5/2 < ¢(G) < \/2X,

@ The spectral gap is also closely related to the important concept of
expander graphs.

Cheeger’s inequality J

@ Intuitively, expander graphs G = (V/, E) satisfy the property that for
all (not too large) subsets S C V/, the size of the neighbourhood of S
is sufficiently larger than the size of S.
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Expander graphs and applications

@ Expander graphs have many applications (e.g. in coding theory,
random walks, error probability amplification and derandomization).

@ There are various combinatorial parameterized definitions and we will
soon present two specific definitions.

@ Expansion is (with high probability) a property of random graphs and
in a sense expander graphs are often surrogates for random graphs.

@ There is a considerable amount of research on the construction of
explicitly defined expander graphs of small degree.

@ We will see that algebraically, expander graphs can also be
characterized as graphs having a suitable spectral gap, and also
equivalently as graphs having rapid (i.e. O(log n)) mixing time to
equilibrium in a random walk.
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Two specific conbinatorial expander definitions
Two expander definitions that occur are the following:

An (n,d, c)) node expander

A (n,d, c) node expander is an n node d-regular biparitite graph
multi-graph G = (X, Y, E) with |X| = |Y| = n/2 such that any subset
S C X satsifies

—Neighbourhood of S| > (1+ ¢(1 — %S')|5|

An (n,d,c)) edge expander

(N, d, c) edge expander is an n node, d-regular multi-graph G = (V, E)
such that any subset S C V with |S| < n/2 has at least cd|S| edges
between S and V' \ S.

@ In general, one wants small degree d and a constant ¢ > 0.

@ Most random d-regular bipartite garphs are such expanders but we
usually need explicitly constructed exapnders (which are known).
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Expanders and the spectral gap

Given this type of edge expander, we have the following seminal relation
with the spectral gap (due to Noga Alon). Here we let {)\;} be the
eigenvalues of the adjacency matrix A(G).

Relating expansion and spectral gap

If G isa (n,d,c) edge expander then \; = d, then

3(1— Xo/d) < ¢ < V2(1— Xo/d)
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Random walks and node expanders

@ It is convenient again to normalize the adjacency matrix to form
P=A(G)/d.

@ Since G is bipartite there is no stationary distribution so to make the
process aperiodic, define Q = (/ 4+ P)/2 meaning that with probability
1/2, the process stays in the same state. Q now represents a doubly
stochastic Markov process with a uniform stationary distribution {7;}.

@ The eigenvalues are now {\} satisfying \; = W so that \] = 1.
Now suppose we have an expander with X}, <1 — 5

Fast convergence

lqf —mj]
max; ——= < n*5(\})* where
J

qjt is the probability of being in state j at time t.

@ This implies convergence in O(log n) steps. See Motwani and
Raghavan, Section 6.7.2.
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Application to probability correctness amplification

o Consider a polynomial time RP (1-sided error) set (e.g. the composite
numbers, represented in binary or decimalor BPP (2-sided error) set.

@ Suppose the algorithm has error probability ¢ (e.g. ¢ = 1/4) using n
random bits.

@ For an RP (resp. BPP) set we can amplifiy the error bound to cX by
doing k independent trial and hence using kn bits.

@ Suppose we have an explicit expander with constant degree (say
degree d = 8). Consider a random walk on an (exponential size)
expander where the nodes correspond to n bit strings.

@ Since the stationary distribution is the uniform distribution, the idea
is to do such a random walk and sample some O(k) nodes, sampling
every b steps (for some appropriate b)

@ Starting at a random node (using n bits), we will only need n+ O(k)
bits to obtain enough trials and the desired c* error.
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# P counting problems

@ Recall that an NP set L can be defined by L = {x|R(x, y)} where R
is a polynomial time verification algorithm and y is a polynomial
length certificate. (Similarly, RP sets are those where the fraction of
certificates is some constant ¢ > 0.)

@ A #P counting problem #L is one that can be defined as the number
of certficates for an NP set L.

@ For example, #SAT is the counting problem that outputs the number
#x of satsifying formulas for an input formula x encoding a CNF
formual F.

@ Clearly if #L is polynomial time computable, then so is L so we
certainly do not expect counting problems coresponding to NP
complete sets to be computable in polynomial time.
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# P complete counting problems

@ Clearly #SAT is a #P complete problem in the sense that that any
NP counting problem can be reduced to this problems.

@ But even if L is polynomial time computable, it does not show that
#L is polynomial time.

@ For example, given a proper DNF formula F, it is immediately clear
that F is satisfiable and given a bipartite graph G, we can efficiently
determine if G has a perfect matching. However, both #DNF-SAT
and #bipartite-matching are #P complete counting problems.
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Approximating #P complete counting problems

@ Given the hardness of #P complete problems, what we can hope for
is to compute an estimate of #x for an input instance x. We want an
estimate to fall in the range [(1 — €)#x, (1 + €)#x] for every input
instance x.

@ For a randomized algorithm we would want such an estimate to be
obtained with probability error some § < 1.

@ Given that we can encode an € in log 1 /e bits, we might hope for such
an algorithm to have time bounded by a polynomial is n, log1/e and
for randomized algorithms also in time log1/6. But it turns out that
this would imply P = #P (or BPP = #P for randomized algorithms).

@ Instead we will be happy to get algorithms with run time polynomial
in n,(1/¢, and log1/6. Such a randomized algorithm are called an
FPRAS algorithm.
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Approximate counting

@ Unlike the BPP= P question, it turns out that there are some
counting problems (e.g. volume estimnation of a convex body in n
dimensions) for which randomization provably helps.

@ When the underlying decision problem L is in P, there is a natural
randomized approach, which we can call “basic Monte Carlo
sampling”.

@ Namely, sample from the space of all possible inputs and let the
fraction of good inputs (i.e. those in the set L) be an estimate of the
fraction of all inputs that are good

@ Here then is the “abstract estimation problem”: Let f be a Boolean
function over a universe U such that f(U) can be efficiently
computed for any v € U. Assume that U can be sampled uniformly
at random. We want to estimate the size of G = {u|f(u) = 1}.

18 /26



The natural estmation approach and its limitation

o Let Y; = 1iff f(u;) = 1 where u; is the i*" sampled input. Choose m
random samples and then estimate |G| by Z = |U|_; Yi/m.

@ Let p=|G|/|U|. Then the basic Monte Carlo estimation is an FRPAS
if m> é In %.

@ So what is the limitation?
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What happens when p is small or when it is hard to
sample uniformly

@ Whe p is small (as it can be for say DNF-SAT or bipartite matchings)
or when it is not clear how to sample uniformly (e.g. trying to sample
from the set M, of all size k matchings and then using this sampling
to recursively estimate the number my of size kK matchings.

@ When the minimum degree is at least n/2 here is the approach. The
idea is to sample uniformly from My, U My _1. This will give estimates
of re — mk/mk_l

o Noting that m; = |E|, the desired estimate is m, = miM7_,r;.

@ To do the sampling, one needs to construct a doubly stochastic
matrix (as in the amplification analysis) such that the resulting
Markov process is rapidly mixing.
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Applications of the smallest eigenvalue

We return to the normalized adjacency matrix A’(G) with eigenvalues
{ai}.

It can be shown that G is bipartitie iff a1 = —a,.

Recalling that the eigenvalues of A" are in [1,-1], the matrix | + A’
has eigenvalues in [0,2].

A graph G = (V,E) is “close to bipartite” if the smallest value of

I + A’ is close to 0.

Another way to think about being close to bipartite is to have a large
maximum cut(S) relative to |E|.

The best approximation for this NP hard problem is the same ~ .878
achieved by the same kind of SDP we saw for Max-2-Sat. This ratio
is the best possible assuming the UGC.

The obvious greedy algorithm for max cut (or the naive random
algorithm ) gives a 1/2 approximation and it remained an open
problem to beat 1/2. Trevisan uses a spectral based algorithm that
acheievs ratio .531 which was then improved by Sato to ,614. Can we
achieve the 3/4 for Max-Cut by a combinational algorithm as we have
for Max-Sat? 21/26



Continued spectral applications

@ Steuer gives some evidence for annd against the UGC. The evidence
against is an improved UGC algorithm that exploitts the entire
spectrum (of eigenvalues).

@ More classical results go back to Hoffman who related the
independence number «(G) and chromatic number x(G) of graph to
the spectrum.

@ Namely, for {\;} again being the eigenvalues for the adjcency matrix,

a(G) < dm;{"/\n and

X(G) > 1— 3%
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Factor revealing LPs

@ In the dual fitting method (that we illustrated with the natural greedy
algorithm for set cover problem), the dual solution is not a feasible
dual. But the dual solution appropriately scaled down is a a feasible
dual. For the set cover problem, if d is the maximum size of any set,
then Hy is a sufficient scaling factor. (This is dual complementary
slackness.)

@ Is there a principled way to think about deriving appropriate scaling
factors so that dual solutions become feasible? This will be the goal
of factor revealing LPs.

@ The greedy algorithm can be recast as a primal dual algorithm where
the price(e;) becomes the dual variable y; associated with element e;.
These dual {y;} variables are raised simultaneously and whenever a
dual constraint becomes tight for a set S;, all the dual variables in 5;
are frozen (i.e. no longer raised) and withdraw their contribution from
all other sets in which they occur. Then S; is added to the cover.
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Factor revealing LPs continued

@ This then has the nice interpretation of the dual variables paying for
the sets in the cover.

@ By renaming, let the order in which the dual variables are covererd be
€1, €,...,emn. By the uniform raising of the dual variables we then
have y1 < y2... < ym.

@ Let us say that a k element set S; is selected when i — 1 of its
elements have already been covered (and hence frozen). Then
(k—i+1)y; > w;.

@ The goal then is to see what is the least scaling factor that can be
used to insure dual feasibility.

@ For a fixed size problem (i.e. fixing n and m, the number of sets and
elements), we want to maximize over all sets and all instances of that
size to reveal a satisfactory scaling factor.
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Factor revealing LPs continued

For the set cover greedy algorithm recast as a primal dual algorithm, we
have the following factor revealing LP problem (for instances of a given
size):

Factor revealing LP for set cover greedy algorithm

k H . -
Maximize Z’W;sly’ over {y;} and all sets S (noting that ws is now
considered a variable)
subject to

@ yi<yiy1 1<i<k-1

o (k—i+1l)yi<ws 1<i<k-1
oyi>0 1<i<k

o ws >1
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Factor revealing LP conclusion

For any fixed size, the factor revealing LP provides an appropriate
scaling factor.

One then needs to consider the supremum of these values as the
instancd size grows.

The hope is that by inspection of some small cases that one can see
determine an appropriate scaling factor for all instance sizes. That is,
the approach provides guidance for an eventual human derived proof.
Factor revealing LPs have been used in a number of algorithmic
analyses. It was first explicitly presented by Jain et al [2003] for
greedy algorithms for the facility location problem.

It has been extended by Mahdian and Yan to [2011] to the KVV
Ranking algorithm for bipartite matching in the ROM model. Their
extension to strongly factor revealing LPs is such that any member of
the family of factor revealing LPs can be used to establish an
appropriate scaling factor.

Another variant called tradeoff revealing LPs was used by Mehta et al
[2015] to analyze a greedy algorithm for the the adwords problem.
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