
CSC2420 Spring 2016: Algorithm Design,
Analysis and Theory

Lecture 11

Allan Borodin

March 31, 2016

1 / 41

Announcements and todays agenda

Announcements

1 With much embarrassment, I still have three sets of slides for last
weeks guest lecture (Lecture 8) by Aleksander Nikolov that I still
haven’t had a chance to read carefully. I really really hope to have
them posted by this weekend.

2 There are now 4 questions posted for Assignment 3.

Todays agenda

1 Discussion of randomized primality testing.
2 Discussion of weighted majority algorithm
3 Monotone submodular maximization subject to matroid and

independence constraints and the return of non-oblivious local search.
4 The Lovasz Local lemma and the Moser-Tardos algorithm for finding a

satisfying instance of an exact k-SAT formula in which every clause C
shares a variable with at most d < 2k/e other clauses.

2 / 41

Primality testing
I now want to briefly turn attention to one of the most influential
randomized algorithms, namely a poly time randomized algorithm for
primality (or perhaps better called compositeness) testing. Let
PRIME = {N|N is a prime number} where N is represented in say
binary (or any base other than unary) so that n = |N| = O(logN).
History of polynomial time algorithms:

1 Vaughan 1972 showed that PRIMES is in NP. Note that co-PRIMES
(i.e. the composites) are easily seen to be in NP.

2 One sided error randomized algorithms (for compositeness) by Solovay
and Strassen and independently Rabin in 1974. That is,
Prob[ALG says N prime |N composite] ≤ δ < 1 and Prob[ALG says N
composite |N prime] = 0

3 The Rabin test is related to an algorithm by Miller that gives a
deterministic polynomial time algorithm assuming a conjecture that
would follow from (the unproven) ERH. The Rabin test is now called
the Miller-Rabin test.

4 Goldwasser and Killian establish a 0-sided randomized algorithm.
5 In 2002, Agarwal, Kayal and Saxena show that primality is in

deterministic polynomial time.
3 / 41

Why consider randomized tests when there is a
deterministic algorithm?

Even though there is now a deterministic algorithm, it is not nearly as
efficient as the 1-sided error algorithms which are used in practice.
These randomized results spurred interest in the topic (and other
number theoretic algorithms) and had a major role in cryptographic
protocols (which often need random large primes). Moreover, these
algorithms became the impetus for major developments in randomized
algoritms.

While many of our previous algorithms (excluding the streaming
algorithm for Fk) might be considered reasonably natural (or natural
extensions of a deterministic algorithm), the primality tests require
some understanding of the subject matter (i.e. a little number theory)
and these algorithms are not something that immediately comes to
mind.

4 / 41

Some basic number theory we need

Z ∗N = {a ∈ ZN : gcd(a,N) = 1} is a (commutative) group under
multiplication mod N.

If N is prime, then

1 For a 6= 0(modN), aN−1 = 1(modN).
2 Z∗N is a cyclic group; that is there exists a generator g such that
{g , g2, g3, . . . , gN−1} (all mod N) is the set Z∗N . This implies that
g i 6= 1(modN) for any 1 ≤ i < N − 1.

3 There are exactly two square roots of 1 in Z∗N , namely 1 and -1.

The Chinese Remainder Theorem: Whenever N1 and N2 are relatively
prime (i.e. gcd(N1,N2) = 1), then for all v1 < N1 and v2 < N2, there
exists a unique w < N1 · N2 such that v1 = w(modN1) and
v2 = w(modN2).

5 / 41

A simple but “not quite” correct algorithm

We also need two basic computational facts.

1 ai mod N can be computed efficiently.

2 gcd(a, b) can be efficiently computed.

The following is a simple algorithm that works except for an annoying set
of numbers called Carmichael numbers.

Simple algorithm ignoring Carmichael numbers

Choose a ∈ ZN uniformly at random.
If gcd(a,N) 6= 1, then Output Composite
If aN−1 mod N 6= 1, then Output Composite
Else Output Prime

6 / 41

When does the simple algorithm work?

S = {a|gcd(a,N) = 1 and aN−1 = 1} is a subgroup of Z ∗N
If there exists an a ∈ Z ∗N such that gcd(a,N) = 1 but aN−1 6= 1, then
S is a proper subgroup of Z ∗N .

By Lagrange’s theorem, if S is a proper subgroup, |S | must divide the
order of the group so that |S | ≤ N−1

2

Thus the simple algorithm would be a 1-sided error algorithm with
probabiltiy < 1

2 of saying Prime when N is Composite.

The only composite numbers that give us trouble are the Carmichael
numbers (also known as false primes) for which aN−1modN = 1 for
all a such that gcd(a,N) = 1.

It was only recently (relatively speaking) that in 1994 it was proven
that there are an infinite number of Carmichael numbers.

The first three Carmicahel numbers are 561, 1105, 1729

7 / 41

Miller-Rabin 1-sided error algorithm

Let N − 1 = 2tu with u odd %Since wlg. N is odd, t ≥ 1
Randomly choose non zero a ∈ ZN %Hoping that a will be composite
certificate
If gcd(a,N) 6= 1 then report Composite
x0 = au %All computation is done mod N
For i = 1 . . . t

xi := x2i−1
If xi = 1 and x i−1 /∈ {−1, 1}, then report Composite

End For
If xt 6= 1, then report Composite %xt = xN−1

Else report Prime

8 / 41

Analysis sketch of Miller-Rabin

Let S be the set of a ∈ N that pass (i.e. fool) the Rabin-Miller test.

S is a subgroup of Z ∗N . We want to show that S is a proper subgroup
and then as before by Langrange we will be done.

It suffices then to find one element w ∈ Z ∗N that will not pass the
Miller-Rabin test.
Case 1: N is not Carmichael and then we are done.
Case 2: N is Carmichael and hence N cannot be a prime power.

I N = N1 · N2 and gcd(N1,N2) = 1 and of course odd
I The non-certificates must include some b such that b2

iu = −1(modN)

and hence b2
iu = −1(modN1)

I By the Chinese Remainder Theorem, there exists w = v(modN1) and
w = 1(modN2)

I Hence w2iu = −1(modN1) and w2iu = 1(modN2)
I This implies w2iu /∈ {−1, 1} (mod N)

9 / 41

New topic: the weighted majority algorithm
I am following a survey type paper by Arora, Hazan and Kale [2008]. To
quote from their paper: “We feel that this meta-algorithm and its analysis
should be viewed as a basic tool taught to all algorithms students together
with divide-and-conquer, dynamic programming, random sampling, and
the like”.

The weighted majority algorithm and generalizations
The ”classical” WMA pertains to the following situation:
Suppose we have say n expert weathermen (or maybe “expert” stock
market forecasters) and at every time t, they give a binary prediction
(rain or no rain, Raptors win or lose, dow jones up or down, Canadian
dollar goes up or down.
Now some or all of these experts may actually be getting their
opinions from the same sources (or each other) and hence these
predictions can be highly correlated.
Without any knowledge of the subject matter (and why should I be
any different from the “experts”) I want to try to make predictions
that will be nearly as good (over time t) as the BEST expert.

10 / 41

The weighted majority algorithm

The WM algorithm

Set wi (0) = 1 for all i
For t = 0...

Our (t + 1)st predication is
0: if

∑
{i : expert i predicts 0} wi (t) ≥ (1/2)

∑
i wi (t)

1: if
∑
{i : expert i predicts 1} wi (t) ≥ (1/2)

∑
i wi (t) ; arbitrary o.w.

% We vote with weighted majority; arbitrary if tie

For i = 1..n
If expert i made a mistake on (t + 1)st prediction

then wi (t + 1) = (1− ε)wi (t);
else wi (t + 1) = wi (t)

End If
End For

End For

11 / 41

How good is our uninformed MW prediction?

Theorem : Perfomance of WM

Theorem: Let mi (t) be the number of mistakes of expert i after the first t
forecasts, and let M(t) be the number of our mistakes. Then for any
expert i (including the best expert) M(t) ≤ 2 ln n

ε + 2(1 + ε)mi (t) .

That is, we are “essentially” within a multiplicative factor of 2 plus an
additive term of the best expert (without knowing anything).

Using randomization, the factor of 2 can be removed. That is, instead
of taking the weighted majority opinion, in each iteration t, choose
the prediction of the i th expert with probability wi (t)/

∑
i wi (t)

Theorem: Performance of Randomized WM

For any expert i , E[M(t)] ≤ ln n
ε + (1 + ε)mi (t)

12 / 41

Proof of deterministic WM
Let’s assume that ε ≤ 1/2. It follows that

−ε− ε2 ≤ ln(1− ε) < −ε
Let wi ,t be the weight of the i th expert at time t and let mi (t) be the
number of mistakes made by expert i . . Consider the potential function
Φ(t) =

∑
i wi ,t . Clearly

Φ(t) ≥ wi ,t = (1− ε)mi (t)

We now need an upper bound on Φ(t). Since each time the WM
algoriithm makes a mistake, at least half of the algorithms make a mistake
so that Φ(t) ≤ (1− ε/2)Φ(t − 1). Starting with Φ(0) = n, by induction

Φ(t) ≤ n · (1− ε/2)M(t)

Putting the two inequlaities together and taking logarithms

ln(1− ε)mi (t) ≤ ln n + M(t) ln(1− ε/2)

The argument is completed by rearranging, using the above facts
concerning ln(1− ε) and then dividing by ε/2. 13 / 41

What is the meaning of the randomized
impovement?

In many applications of randomization we can argue that
randomization is (provably) necessary and in other applications, it
may not be provable so far but current experience argues that the
best algorithm in theory and practice is randomized.

For some algorithms (and especially online algorithms) analyzed in
terms of worst case performance, there is some debate on what
randomization is actually accomplishing.

In a [1996] article Blum states that “Intuitively, the advantage of the
randomized approach is that it dilutes the worst case”. He continues
to explain that in the determinstic algorithm, slightly more than half
of the total weight could have predicted incorrectly, causing the
algorithm to make a mistake and yet only reducing the total weight
by 1/4 (when ε = 1/2). But in the randomized version, there is still a
.5 probability that the algorithm will predict correctly. Convincing?

14 / 41

An opposing viewpoint
In the blog LessWrong this view is strongly rejected. Here the writer
makes the following comments: “We should be especially suspicious
that the randomized algorithm guesses with probability proportional
to the expert weight assigned. This seems strongly reminiscent of
betting with 70% probability on blue, when the environment is a
random mix of 70% blue and 30% red cards. We know the best bet
and yet we only sometimes make this best bet, at other times betting
on a condition we believe to be less probable.
Yet we thereby prove a smaller upper bound on the expected error. Is
there an algebraic error in the second proof? Are we extracting useful
work from a noise source? Is our knowledge harming us so much that
we can do better through ignorance?” The writer asks: “So what’s
the gotcha ... the improved upper bound proven for the randomized
algorithm did not come from the randomized algorithm making
systematically better predictions - doing superior cognitive work,
being more intelligent - but because we arbitrarily declared that an
intelligent adversary could read our mind in one case but not in the
other.” 15 / 41

Further defense of the randomized approach

Blum’s article expresses a second benefit of the randomized approach:
“Therefore the algorithm can be naturally applied when predictions
are ‘strategies’ or other sorts of things that cannot easily be combined
together. Moreover, if the ‘experts’ are programs to be run or
functions to be evaluated, then this view speeds up prediction since
only one expert needs to be examined in order to produce the
algorithm’s prediction”

We also know (in another context) that ROM ordering can beat any
deterministic priority order say for the online bipartite matching
problem.

16 / 41

Generalizing: The Multiplicative Weights algorithm

The Weighted Majority algorithm can be generalized to the multiplicative
weights algorithm. If the i th expert or decision is chosen on day t, it incurs
a real valued cost/profit mi (t) ∈ [−1, 1]. The algorithm then updates
wi (t + 1) = (1− εmi (t))wi (t). Let ε ≤ 1/2 and Φ(t) =

∑
i wi (t). On day

t, we randomly select expert i with probability wi (t)/Φ(t).

Performance of The MW algorithm

The expected cost of the MW algorithm after T rounds is∑T
t=1 m(t) · p(t) ≤ ln n

ε +
∑T

t=1mi (t) + ε
∑T

t=1 |mi (t)|

17 / 41

Reinterpreting in terms of gains instead of losses

We can have a vector m(t) of gains instead of losses and then use the
“cost vector” −m(t) in the MW algorithm resulting in:

Performance of The MW algorithm for gains∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1mi (t)− ε
∑T

t=1 |mi (t)|

By taking convex combinations, an immediate corollary is

Performance wrt. a fixed distribution p∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1 m(t)− ε|m(t)|)p

18 / 41

An application to learning a linear binary classifier
Instead of the online application of following expert advice, let us now
think of “time” as rounds in an iterative procedure. In particular, we
would like to compute a linear binary classifier (when it exists).

We are trying to classsify objects characterized by n features; that is
by points a in <n. We are given m labelled examples
(a1, `1), . . . , (am, `m) where `j ∈ {−1,+1}
We are going to assume that these examples can be “well classified”
by a linear classifier in the sense that there exists a non negative
vector x∗ ∈ <n (with xi ≥ 0) such that sign(aj · x∗) = `j for all j .

This is equivalent to saying `jaj · x∗ ≥ 0 and furthermore (to explain
the “well”) we will say that `jaj · x∗ ≥ δ for some δ > 0.

The goal now is to learn some linear classifer; ie a non negative
x ∈ <n such that `jaj · x∗ ≥ 0. Without loss of generality, we can
assume that

∑
i xi = 1.

Letting bj = `jaj , this can now be veiwed as a reasonably general LP
(search) problem.

19 / 41

Littlestone’s Winnow algorithm for learning a linear
classifier

Litlestone [1987] used the multiplicative weights approach to solve
this linear classification problem.
Let ρ = maxj ||bj ||∞ and let ε = δ/(2ρ)
The idea is to run the MW algorthm with the decisions given by the n
features and gains specified by the m examples. The gain for feature i
with respect to the j th example is defined as (bj)i/ρ which is in [-1,1].
The x we are seeking is the distribution p in MW.

The Winnow algorithm

Initialize p
While there are points not yet satisfied

Let bj · p < 0 % a constraint not satisfied
Use MW to upate p

End While

Bound on number of iterations

The Winnow algorithm will terminate in at most d4ρ2 ln n/δ2e iterations.20 / 41

Some additional remarks on Multiplicative Weights

The survey by Arora, Hazan and Kale [2012] discusses other modifications
of the MW paradigm and numerous applications. In terms of applications,
they sketch results for

Aporoximately solving (in the sense of property testing) the decision
problem for an LP; there that is given linear constraints expressed by
Ax ≥ b, the decision problem is to see if such a non-negative x exists
(or more generally, if x is in some given convex set). The algorithm
either returns a x : Aix ≥ bi − δ for all i and some additive
approximation δ or says that the given LP was infeasible.

Solving zero sum games approximately.

The AdaBoost algorithm of Shapire and Freund

Some other specific applications including a class of online algorithms.

21 / 41

Matroids, k-independence systems, submodular
functions and the natural greedy algorithm.

Beautiful development starting in the 1950’s with the work of Rado
[1957], Gale 1968 and Edmonds [1970, 1971], (extended by Korte and
Lovász [1981, 1984], and others) as to contexts in which “the
natural” greedy algorithm will produce an optimal solution.

In particular, matroids characterize those hereditary set systems for
which the natural greedy algorithm (determined by the order
c1 ≥ c2 . . . for maximization) will optimize a linear objective function∑

cixi for a maximum independent set {i : xi = 1} in a matroid
M = (E , I) where I are the independent subsets of E .

Here the best known example is perhaps the minimum (or maximum)
spanning tree problem where the edges of a graph are the elements
and the indepedent sets are forests in the graph. Kruskal’s greedy
algorithm is the natural greedy MST algorithm.

22 / 41

More general independence systems

There are many equivalent ways to define matroids. In particular, the
exchange property immediately implies that in a matroid M every maximal
independent set (base) has the same cardinality, the rank of M. We can
also define a base for any subset S ⊆ U. Matroids are those independence
systems where all bases have the same cardinality.
A (Jenkyns) k-independence system satisfies the weaker property that for

any set S and two bases B and B ′ of S , |B||B′| ≤ k . Matroids are precisely
the case of k = 1.
Examples:

The intersection of k matroids

Mestre’s k-extendible systems where the matroid exchange property is
replaced by : If S ⊆ T and S ∪ {u} and T are independent, then
∃Y ⊆ T − S : |Y | ≤ k and T − Y ∪ {u} is independent.

Independent sets in k + 1 claw free graphs. In such graphs, the
neighbourhood of every node has at most k independent vertices.

23 / 41

The standard greedy algorithm for k-systems and
k + 1 claw free graphs

Jenkyns shows that the standard greedy algorithm is a k-approximation for
maximizing a linear function subject to independence in a k-independence
system. It follows that the standard greedy algorithm is a k-approximation
for independence in a k + 1 claw free graph.
This implies constant approximations for many classes of graphs, in
particular for many types of graphs induced by intersections of geometric
objects.

24 / 41

Monotone submodular function maximization
As previously mentioned, the monotone problem is only interesting
when the submodular maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k)k

approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}

End While
25 / 41

Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint. Matroids
are an elegant abstraction of independence in a variety of settings.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and the 1-exchange local search algorithm achieve a 1

2
approximation for an arbitrary matroid constraint.

They also showed that this bound was tight for greedy and for the
1-exchange local search.

26 / 41

Matroids and independence systems
Independence systems and matroids
Let M = (U,F), where U is a set of elements, F ⊆ 2|U|; I ∈ F is
called an independent set.
An (heriditary) independence system satisfies the following properties:
1) ∅ ∈ F ; often stated although not necessary if F 6= ∅
2) S ⊆ T ,T ∈ F ⇒ S ∈ F
A matroid is an independence system that also satisfies:
3) S ,T ∈ F , |S | < |T |, then ∃x ∈ T \ S such that S ∪ {x} ∈ F
Sets having at most k elements constitute the independent sets in a
uniform matroid
Other common examples, include

1 partition matroids where U is the disjoint union U1 ∪ U2 . . . ∪ Ur and
there are individual cardiality constraints ki for each block Ui of the
partition.

2 Graphic matroids where U is the set of edges E in a graph G = (V ,E)
and E ′ ⊆ E is independent if G = (V ,E ′) is acyclic.

3 Linear matroids where U is a set of vectors in a vector space and I is
independent in the usualy sense of linear independence.

27 / 41

Monotone submodular maximization subject to a
matroid constraint
We need some additional facts about matroids and submodular functions.

Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two bases). Then there is a
bijection π between O \ S and S \ O such that for all
x ∈ O, (S \ {π(x)}) ∪ x is independent.
We have the following facts for a submodular function f on a ground
set U:

1 Let C = {c1, . . . , c`} ⊆ U \ S . Then

∑̀
i=1

[f (S + ci)− f (S)] ≥ f (S ∪ C)− f (S)

2 Let {t1, . . . , t`} be elements of S . Then

∑̀
i=1

[f (S)− f (S \ {ti}) ≤ f (S)

28 / 41

Approximation bound using 1-exchange local search
for monotone submodular search
We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x /∈ S such that
(S \ {π(x)}) ∪ {x} > f (S). Here π is the bijection as in Brualdi’s result.
Now let S be a local optimum and O an optimal solution. By local
optimality, for all x ∈ O \ S , we have

f (S) ≥ f ((S \ {π(x)}) ∪ {x})

Subtracting (S \ {π(x)}) from both sides, we have

f (S)− (S \ {π(x)}) ≥ f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)})

From submodularity,

f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)}) ≥ f (S ∪ {x})− f (S)

Thus for all x ∈ O \ S

f ((S \ {π(x)} ≥ f (S ∪ {x})− f (S)

29 / 41

Completing the local search approximation

Summing over all such x yields∑
x∈O\S

[f (S)− f (S \ {π(x)})] ≥
∑

x∈O\S

[f (S ∪ {x})− f (S)]

Applying the first fact on slide 28 to the right hand side of this inequality
and the second fact to the left hand side, we get

f (S) ≥ f (S ∪ (O \ S))− f (S) = f (O ∪ S)− f (S) ≥ f (O)− f (S)

which gives the desired approximation.

30 / 41

Achieving the 1− 1
e approximation for arbitrary

matroids

An open problem for 30 years was to see if the 1− 1
e approximation

for the cardinality constraint could be obtained for arbitrary matroids.

Calinsecu et al [2007, 2011] positively answer this open problem using
a very different (than anything in our course) algorithm consiting of a
continuous greedy algorithm phase followed by a pipage rounding
phase.

Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide their development) a sophisticated
non-oblivious local search algorithm that is also able to match the
1− 1

e bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.

31 / 41

Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E , a weight function w : E → <≥0 and a collection of
of subsets F = {F1, . . . ,Fn} of E . The goal is to find a subset of indices S
(subject to a matroid constraint) so as to maximize f (S) = w(∪i∈SFi)
subject to some constraint (often a cardinality or matroid constraint).
Note: f is a monotone submodular function.

For ` < r = rank(M), the `-flip oblivious local search for max
coverage has locality gap r−1

2r−`−1 →
1
2 as r increases. (Recall that

greedy achieves 1
2 .)

32 / 41

The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask (as we did for Max-k-Sat), when is one solution better
than the other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u, S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1− 1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .

These α factors give more weight to those elements that appear
frequently which makes it easier to swap out a set S and still keep
many elements u ∈ S in the collection.

33 / 41

The very high level idea and the locality gap

The high-level idea behind the derivation is like the factor revealing
LP used by Jain et al [2003]; namely, Filmus and Ward formulate an
LP for an instance of rank r that determines the best obtainable ratio
(by this approach) and the {αi} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1− 1
e − ε) and

runs in time O(ε−1r2|F||U| log r)
The ε in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U|2 log r).

34 / 41

A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each Fi . For a general monotone submodular
function we no longer have these weights.

Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.

A weight is given to the average value of all solutions obtained from a
solution S by deleting i elements and this corresponds roughly to the
extra weight given to elements covered i + 1 times in the max
coverage case.

The potential function is :

g(S) =
∑|S|

k=0

∑
T :T⊆S ,|T |=k

β
(|S|)
k

(|S|k)
f (T) =

∑|S |
k=0 β

(|S|)
k ET [f (T)]

35 / 41

The Lovász Local Lemma (LLL)

Suppose we have a set of “bad” random events E1, . . . ,Em with
Prob[Ei] ≤ p < 1 for each i . Then if these events are independent we
can easily bound the probability that none of the events has occurred;
namely, it is (1− p)m > 0.

Suppose now that these events are not independent but rather just
have limited dependence. Namely suppose that each Ei is dependent
on at most r other events. Then the Lovász local Lemma (LLL)
states that if e · p · (r + 1) is at most 1, then there is a non zero
probability that none of the bad events Ei occurred.

As stated this is a non-constructive result in that it does not provide a
joint event in which none of the bad events occured.

There are a number of applications of LLL including (Leighton,
Maggs, Rao) routing, the restricted machines version of the Maxmin
“Santa Claus” problem and as we shall now see, solving exact k-SAT
under suitable conditions on the clauses.

36 / 41

A somewhat canonical application of the LLL

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be a an exact k CNF formula. From our
previous discussion of the exact Max-k-Sat problem and the naive
randomized algorithm, it is easy to see that if m < 2k , then F must
be satisfiable. (E [clauases satisfied] = 2k−1

2k
m > m− 1 when m < 2k .)

Suppose instead that we have an arbitrary number of clauses but now
for each clause C , at most r other clauses share a variable with C .

If we let Ei denote the event that Ci is not satisfied for a random
uniform assignment and hence having probability 1/(2k), then we are
interested in having a non zero probability that none of the Ei

occurred (i.e. that F is satisfiable).

The LLL tells us that if r + 1 ≤ 2k

e , then F is satisfiable.

As informally but nicely stated in Gebauer et al [2009]: “In an
unsatisable CNF formula, clauses have to interleave; the larger the
clauses, the more interleaving is required.”

37 / 41

A constructive algorithm for the previous proof of
satisfiability

Here we will follow a somewhat weaker version (for r ≤ 2k/8) proven
by Moser [2009] and then improved by Moser and G. Tardos [2010] to
give the tight LLL bound. This proof was succinctly explained in a
blog by Lance Fortnow

This is a constructive proof in that there is a randomized algorithm
(which can be de-randomized) that with high probability (given the
limited dependence) will terminate and produce a satisfying
assignment in O(mlogm) evaluations of the formula.

Both the algorithm and the analysis are very elegant. In essence, the
algorithm can be thought of as a local search search algorithm and it
seems that this kind of analysis (an information theoretic argument
using Kolmogorov complexity to bound convergence) should be more
widely applicable.

38 / 41

The Moser algorithm

We are given an exact k-CNF formula F with m variables such that for
every clause C , at most r ≤ 2k/8 other clauses share a variable with C .

Algorithm for finding a satisfying truth assignment

Let τ be a random assignment
Procedure SOLVE

While there is a clause C not satisfied
Call FIX(C)

End While

Procedure FIX(C)
Randomly set all the variables occuring in C
While there is a neighbouring unsatisfied clause D

Call FIX(D)
End While

39 / 41

Sketch of Moser algorithm

Suppose the algorithm makes at least s recursive calls to FIX. Then
n + s ∗ k random bits describes the algorithm computation up to the
sth call at which time we have some true assignment τ ′.

That is, the computation (if it halts in s calls is described by the n bits
to describe the initial τ and the k bits for each of the s calls to FIX.

Using Kolmogorov complexity, we state the fact that most random
strings cannot be compressed.

Now we say that r is sufficiently small if k − log r − c > 0 for some
constant c , Then the main idea is to describe these n + s ∗ k bits in a
compressed way if s is large enough and r is small enough.

40 / 41

Moser proof continued

Claim: Any C that is satisfied before Fix(C) is called in SOLVE
remains satisfied.

Claim: Working backwards from τ ′ we can recover the original
n + s ∗ k bits using n + m logm + s(log r + c) bits; that is n for τ ′,
m logm for calls to FIX in SOLVE and log r + c for each recursive call.

Note: Here it is not stated, but the algorithm does not always
terminate

41 / 41

