

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Lecture 10

Allan Borodin

March 24, 2016

Announcements and todays agenda

- Announcements
 - ① I now have three sets of slides for the guest lecture (Lecture 8) by Aleksander Nikolov on the use of linear discrepancy in algorithm design. I had hoped to have them posted by last weekend but now I am aiming for this weekend.
 - ② Assignment 2 due today, March 24.
 - ③ The deadline for submitting undergraduate grades (for graduating students) is May 6. I would like to submit grades for everyone before that, let's say by May 2.
 - ④ I am setting April 14 as the due date for assignment 3. I have posted the first two questions for assignment 3. Depending on the length of the assignment, I might extend the date but want to make sure Nicolas has the time to grade the assignment.
- Todays agenda
 - ① Sublinear space and time algorithms.

Sublinear time and sublinear space algorithms

We now consider contexts in which randomization is provably more essential. In particular, we will study sublinear time algorithms and then the (small space) streaming model.

- An algorithm is sublinear time if its running time is $o(n)$, where n is the length of the input. As such an algorithm must provide an answer without reading the entire input.
- Thus to achieve non-trivial tasks, we almost always have to use randomness in sublinear time algorithms to **sample** parts of the inputs.
- The subject of sublinear time algorithms is a big topic and we will only present a very small selection of hopefully representative results.
- The general flavour of results will be a tradeoff between the accuracy of the solution and the time bound.
- This topic will take us beyond search and optimization problems.

A deterministic exception: estimating the diameter in a finite metric space

- We first consider an exception of a “sublinear time” algorithm that does not use randomization. (Comment: “sublinear in a weak sense”.)
- Suppose we are given a finite metric space M (with say n points x_i) where the input is given as n^2 distance values $d(x_i, x_j)$. The problem is to compute the diameter D of the metric space, that is, the maximum distance between any two points.
- For this maximum diameter problem, there is a simple $O(n)$ time (and hence sublinear in n^2 , the number of distances) algorithm; namely, choose an arbitrary point $x \in M$ and compute $D = \max_j d(x, x_j)$. By the triangle inequality, D is a 2-approximation of the diameter.
- I say sublinear time in a weak sense because in an implicitly represented distance function (such as d dimensional Euclidean space), the points could be explicitly given as inputs and then the input size is n and not n^2 .

Sampling the inputs: some examples

- The goal in this area is to minimize execution time while still being able to produce a reasonable answer with sufficiently high probability.
- We will consider the following examples:
 - ① Finding an element in an (anchored) sorted linked list [Chazelle,Liu,Magen]
 - ② Estimating the average degree in a graph [Feige 2006]
 - ③ Estimating the size of some maximal (and maximum) matching [Nguyen and Onak 2008] in bounded degree graphs.
 - ④ Examples of property testing, a major topic within the area of sublinear time algorithms. See Dana Ron's DBLP for many results and surveys.

Finding an element in an (anchored) sorted list

- Suppose we have an array $A[i]$ for $1 \leq i \leq n$ where each $A[i]$ is a pair (x_i, p_i) with $x_1 = \min\{x_i\}$ and p_i being a pointer to the next smallest value in the linked list.
- That is, $x_{p_i} = \min\{x_j | x_j > x_i\}$. (For simplicity we are assuming all x_j are distinct.)
- We would like to determine if a given value x occurs in the linked list and if so, output the index j such that $x = x_j$.

A \sqrt{n} algorithm for searching in an anchored sorted linked list

If $x < x_1$, then x is not in the list.

Let $R = \{j_i | 0 \leq i \leq \sqrt{n}\}$ be \sqrt{n} randomly chosen indices plus the index 1. Access these $\{A[j_i]\}$ to determine k such that x_k is the largest of the accessed array elements less than or equal to x .

From $A[k]$, search forward $2\sqrt{n}$ steps in list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when $x \in \{A[i]\}$) will fail to return j such that $x = A[j]$ with probability at most $1/2$.

Estimating average degree in a graph

- Given a graph $G = (V, E)$ with $|V| = n$, we want to estimate the average degree d of the vertices.
- We want to construct an algorithm that approximates the average degree within a factor less than $(2 + \epsilon)$ with probability at least $3/4$ in time $O(\frac{\sqrt{n}}{\text{poly}(\epsilon)})$. We will assume that we can access the degree d_i of any vertex v_i in one step.
- Like a number of results in this area, the algorithm is simple but the analysis requires some care.

The Feige algorithm

Sample $8/\epsilon$ random subsets S_i of V each of size (say) $\frac{\sqrt{n}}{\epsilon^3}$

Compute the average degree a_i of nodes in each S_i .

The output is the minimum of these $\{a_i\}$.

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might have estimates that are too low or too high. But we will show that with high probability these estimates will not be too bad. More precisely, we need:

- ① Lemma 1: $\text{Prob}[a_i < \frac{1}{2}(1 - \epsilon)\bar{d}] \leq \frac{\epsilon}{64}$
- ② Lemma 2: $\text{Prob}[a_i > (1 + \epsilon)\bar{d}] \leq 1 - \frac{\epsilon}{2}$

The probability bound in Lemma 2 is amplified as usual by repeated trials. For Lemma 1, we fall outside the desired bound if any of the repeated trials gives a very small estimate of the average degree but by the union bound this is no worse than the sum of the probabilities for each trial.

Understanding the input query model

- As we initially noted, sublinear time algorithms almost invariably sample (i.e. query) the input in some way. The nature of these queries will clearly influence what kinds of results can be obtained.
- Feige's [2006] algorithm for estimating the average degree uses only "degree queries"; that is, "what is the degree of a vertex v ".
- Feige shows that in this degree query model, any algorithm that achieves a $(2 - \epsilon)$ approximation (for any $\epsilon > 0$) requires time $\Omega(n)$.
- In contrast, Goldreich and Ron [2008] consider the same average degree problem in the "neighbour query" model; that is, upon a query (v, j) , the query oracle returns the j^{th} neighbour of v or a special symbol indicating that v has degree less than j . A degree query can be simulated by $\log n$ neighbour queries.
- Goldreich and Ron show that in the neighbour query model, that the average degree \bar{d} can be $(1 + \epsilon)$ approximated (with one sided error probability $2/3$) in time $O(\sqrt{n} \text{poly}(\log n, \frac{1}{\epsilon}))$
- They show that $\Omega(\sqrt{n/\epsilon})$ queries is necessary to achieve a $(1 + \epsilon)$ approximation.

Approximating the size of a maximum matching in a bounded degree graph

- We recall that the size of any *maximal* matching is within a factor of 2 of the size of a maximum matching. Let m be smallest possible maximal matching.
- Our goal is to compute with high probability a *maximal* matching in time depending only on the maximum degree D .

Nguyen and Onak Algorithm

Choose a random permutation p of the edges $\{e_j\}$

% Note: this will be done “on the fly” as needed

The permutation determines a maximal matching M as given by the greedy algorithm that adds an edge whenever possible.

Choose $r = O(D/\epsilon^2)$ nodes $\{v_i\}$ at random

Using an “oracle” let X_i be the indicator random variable for whether or not vertex v_i is in the maximal matching.

Output $\tilde{m} = \sum_{i=1 \dots r} X_i$

Performance and time for the maximal matching

Claims

- ① $m \leq \tilde{m} \leq m + \epsilon n$ where $m = |M|$.
- ② The algorithm runs in time $2^{O(D)} / \epsilon^2$

- This immediately gives an approximation of the *maximum* matching m^* such that $m^* \leq \tilde{m} \leq 2m^* + \epsilon n$
- A more involved algorithm by Nguyen and Onak yields the following result:

Nguyen and Onak maximum matching result

Let $\delta, \epsilon > 0$ and let $k = \lceil 1/\delta \rceil$. There is a randomized one sided algorithm (with probability $2/3$) running in time $\frac{2^{O(Dk)}}{\epsilon^{2k+1}}$ that outputs a maximum matching estimate \tilde{m} such that $m^* \leq \tilde{m} \leq (1 + \delta)m^* + \epsilon n$.

Property Testing

- Perhaps the most prevalent and useful aspect of sublinear time algorithms is for the concept of property testing. This is its own area of research with many results.
- Here is the concept: Given an object G (e.g. a function, a graph), test whether or not G has some property P (e.g. G is bipartite) or is in some sense far away from that property.
- The tester determines with sufficiently high probability (say $2/3$) if G has the property or is “ ϵ -far” from having the property. The tester can answer either way if G does not have the property but is “ ϵ -close” to having the property.
- We will usually have a 1-sided error in that we will always answer YES if G has the property.
- We will see what it means to be “ ϵ -far” (or close) from a property by some examples. See also question 2 in assignment 3.

Tester for linearity of a function

- Let $f : Z_n \rightarrow Z_n$; f is linear if $\forall x, y \ f(x + y) = f(x) + f(y)$.
- Note: this will really be a test for group homomorphism
- f is said to be ϵ -close to linear if its values can be changed in at most a fraction ϵ of the function domain arguments (i.e. at most ϵn elements of Z_n) so as to make it a linear function. Otherwise f is said to be ϵ -far from linear.

The tester

Repeat $4/\epsilon$ times

Choose $x, y \in Z_n$ at random

If $f(x) + f(y) \neq f(x + y)$

then Output f is not linear

End Repeat If all these $4/\epsilon$ tests succeed then Output linear

- Clearly if f is linear, the tester says linear.
- For $\epsilon < 2/9$, if f is ϵ -far from being linear then the probability of detecting this is at least $2/3$.

Testing a list for monotonicity

- Given a list $A[i] = x_i, i = 1 \dots n$ of distinct elements, determine if A is a monotone list (i.e. $i < j \Rightarrow A[i] < A[j]$) or is ϵ -far from being monotone in the sense that more than $\epsilon * n$ list values need to be changed in order for A to be monotone.
- The algorithm randomly chooses $2/\epsilon$ random indices i and performs binary search on x_i to determine if x_i in the list. The algorithm reports that the list is monotone if and only if all binary searches succeed.
- Clearly the time bound is $O(\log n/\epsilon)$ and clearly if A is monotone then the tester reports monotone.
- If A is ϵ -far from monotone, then the probability that a random binary search will succeed is at most $(1 - \epsilon)$ and hence the probability of the algorithm failing to detect non-monotonicity is at most $(1 - \epsilon)^{\frac{2}{\epsilon}} \leq \frac{1}{e^2}$

Graph Property testing

- Graph property testing is an area by itself. There are several models for testing graph properties.
- Let $G = (V, E)$ with $n = |V|$ and $m = |E|$.
- Dense model: Graphs represented by adjacency matrix. Say that graph is ϵ -far from having a property P if more than ϵn^2 matrix entries have to be changed so that graph has property P .
- Sparse model, bounded degree model: Graphs represented by vertex adjacency lists. Graph is ϵ -far from property P if at least ϵm edges have to be changed.
- In general there are substantially different results for these two graph models.

The property of being bipartite

- In the dense model, there is a constant time one-sided error tester. The tester is (once again) conceptually what one might expect but the analysis is not at all immediate.

Goldreich, Goldwasser, Ron bipartite tester

Pick a random subset S of vertices of size $r = \Theta\left(\frac{\log(\frac{1}{\epsilon})}{\epsilon^2}\right)$

Output bipartite iff the induced subgraph is bipartite

- Clearly if G is bipartite then the algorithm will always say that it is bipartite.
- The claim is that if G is ϵ -far from being bipartite then the algorithm will say that it is not bipartite with probability at least $2/3$.
- The algorithm runs in time quadratic in the size of the induced subgraph (i.e. the time needed to create the induced subgraph).

Testing bipartiteness in the bounded degree model

- Even for degree 3 graphs, $\Omega(\sqrt{n})$ queries are required to test for being bipartite or ϵ -far from being bipartite. Goldreich and Ron [1997]
- There is a nearly matching algorithm that uses $O(\sqrt{n} \text{poly}(\log n/\epsilon))$ queries. The algorithm is based on random walks in a graph and utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat $O(1/\epsilon)$ times

Randomly select a vertex $s \in V$

If algorithm $\text{OddCycle}(s)$ returns cycle found then REJECT

End Repeat

If case the algorithm did not already reject, then ACCEPT

- OddCycle performs $\text{poly}(\log n/\epsilon)$ random walks from s each of length $\text{poly}(\log n/\epsilon)$. If some vertex v is reached by both an even length and an odd length prefix of a walk then report cycle found; else report odd cycle not found

Sublinear space: A slight detour into complexity theory

- Sublinear space has been an important topic in complexity theory since the start of complexity theory. While not as important as the $P = NP$ or $NP = co-NP$ question, there are two fundamental space questions that remain unresolved:
 - ① Is $NSPACE(S) = DSPACE(S)$ for $S \geq \log n$?
 - ② Is P contained in $DSPACE(\log n)$ or $\cup_k SPACE(\log^k n)$? Equivalently, is P contained in polylogarithmic parallel time.
- Savitch [1969] showed a non deterministic S space bounded TM can be simulated by a deterministic S^2 space bounded machine (for space constructible bounds S).
- Further in what was considered a very surprising result, Immerman [1987] and independently Szelepcsenyi [1987] $NSPACE(S) = co-NSPACE(S)$. (Savitch's result was also considered surprising by some researchers when it was announced.)

USTCON vs STCON

We let *USTCON* (resp. *STCON*) denote the problem of deciding if there is a path from some specified source node s to some specified target node t in an unidirected (resp. directed) graph G .

- As previously mentioned the Aleliunas' et al [1979] random walk result showed that *USTCON* is in $RSPACE(\log n)$ and after a sequence of partial results about *USTCON*, Reingold [2008] was eventually able to show that *USTCON* is in $DSPACE(\log n)$
- It remains open if
 - ① *STCON* (and hence $NSPACE(\log n)$) is in $RSPACE(\log n)$ or even $DSPACE(\log n)$.
 - ② $STCON \in RSPACE(S)$ or even $DSPACE(S)$ for any $S = o(\log^2 n)$
 - ③ $RSPACE(S) = DSPACE(S)$.

The streaming model

- In the data stream model, the input is a sequence A of inputs a_1, \dots, a_m which is assumed to be too large to store in memory.
- We usually assume that m is not known and hence one can think of this model as a type of online or dynamic algorithm that is maintaining (say) current statistics.
- The space available $S(m, n)$ is some sublinear function. The input streams by and one can only store information in space S .
- In some papers, space is measured in bits (which is what we will do) and sometimes in words, each word being $O(\log n)$ bits.
- It is also desirable that each input is processed efficiently, say $\log(m + n)$ and perhaps even in time $O(1)$ (assuming we are counting operations on words as $O(1)$).

The streaming model continued

- The initial (and primary) work in streaming algorithms is to approximately compute some function (say a statistic) of the data or identify some particular element(s) of the data stream.
- Lately, the model has been extended to consider “semi-streaming” algorithms for optimization problems. For example, for a graph problem such as matching for a graph $G = (V, E)$, the goal is to obtain a good approximation using space $\tilde{O}(|V|)$ rather than $O(|E|)$.
- Most results concern the space required for a one pass algorithm. But there are other results concerning the tradeoff between the space and number of passes.

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this area are for randomized algorithms. Here is one exception.

The missing element problem

Suppose we are given a stream $A = a_1, \dots, a_{n-1}$ and we are promised that the stream A is a permutation of $\{1, \dots, n\} - \{x\}$ for some integer x in $[1, n]$. The goal is to compute the missing x .

- Space n is obvious using a bit vector $c_j = 1$ iff j has occurred.
- Instead we know that $\sum_{j \in A} = n(n+1)/2 - x$.
So if $s = \sum_{i \in A} a_i$, then $x = n(n+1)/2 - s$.
This uses only $2 \log n$ space and constant time/item.

Generalizing to k missing elements

Now suppose we are promised a stream A of length $n - k$ whose elements consist of a permutation of $n - k$ distinct elements in $\{1, \dots, n\}$. We want to find the missing k elements.

- Generalizing the one missing element solution, to the case that there are k missing elements we can (for example) maintain the sum of j^{th} powers ($1 \leq j \leq k$) $s_j = \sum_{i \in A} (a_i)^j = c_j(n) - \sum_{i \notin A} x_i^j$. Here $c_j(n)$ is the closed form expression for $\sum_{i=1}^n i^j$. This results in k equations in k unknowns using space $k^2 \log n$ but without an efficient way to compute the solution.
- As far as I know there may not be an efficient small space streaming algorithm for this problem.
- Using randomization, much more efficient methods are known; namely, there is a streaming alg with space and time/item $O(k \log k \log n)$; it can be shown that $\Omega(k \log(n/k))$ space is necessary.

Some well-studied streaming problems

- Computing **frequency moments**. Let $A = a_1 \dots a_m$ be a data stream with $a_i \in [n] = \{1, 2, \dots, n\}$. Let m_i denote the number of occurrences of the value i in the stream A . For $k \geq 0$, the k^{th} frequency moment is $F_k = \sum_{i \in [n]} (m_i)^k$. The frequency moments are most often studied for integral k .
 - ① $F_1 = m$, the length of the sequence which can be simply computed.
 - ② F_0 is the number of distinct elements in the stream
 - ③ F_2 is a special case of interest called the repeat index (also known as Gini's homogeneity index).
- Finding **k -heavy hitters**; i.e. those elements appearing at least n/k times in stream A .
- Finding **rare or unique elements** in A .

What is known about computing F_k ?

Given an error bound ϵ and confidence bound δ , the goal in the frequency moment problem is to compute an estimate F'_k such that

$$\text{Prob}[|F_k - F'_k| > \epsilon F_k] \leq \delta.$$

- The seminal paper in this regard is by Alon, Matias and Szegedy (AMS) [1999]. AMS establish a number of results:
 - ① For $k \geq 3$, there is an $\tilde{O}(m^{1-1/k})$ space algorithm. The \tilde{O} notation hides factors that are polynomial in $\frac{1}{\epsilon}$ and polylogarithmic in $m, n, \frac{1}{\delta}$.
 - ② For $k = 0$ and every $c > 2$, there is an $O(\log n)$ space algorithm computing F'_0 such that
$$\text{Prob}[(1/c)F_0 \leq F'_0 \leq cF_0 \text{ does not hold}] \leq 2/c.$$
 - ③ For $k = 1$, $\log n$ is obvious to exactly compute the length but an estimate can be obtained with space $O(\log \log n + 1/\epsilon)$
 - ④ For $k = 2$, they obtain space $\tilde{O}(1) = O(\frac{\log(1/\delta)}{\epsilon^2})(\log n + \log m))$
 - ⑤ They also show that for all $k > 5$, there is a (space) lower bound of $\Omega(m^{1-5/k})$.

Results following AMS

- A considerable line of research followed this seminal paper. Notably settling conjectures in AMS:
 - The following results apply to real as well as integral k .
 - ① An $\tilde{\Omega}(m^{1-2/k})$ space lower bound for all $k > 2$ (Bar Yossef et al [2002]).
 - ② Indyk and Woodruff [2005] settle the space bound for $k > 2$ with a matching upper bound of $\tilde{O}(m^{1-2/k})$
 - The basic idea behind these randomized approximation algorithms is to define a random variable Y whose expected value is close to F_k and variance is sufficiently small such that this r.v. can be calculated under the space constraint.
 - We will just sketch the (non optimal) AMS results for F_k for $k > 2$ and the result for F_2 .

The AMS F_k algorithm

Let $s_1 = (\frac{8}{\epsilon^2} m^{1-\frac{1}{k}})/\delta^2$ and $s_2 = 2 \log \frac{1}{\delta}$.

AMS algorithm for F_k

The output Y of the algorithm is the median of s_2 random variables Y_1, Y_2, \dots, Y_{s_2} where Y_i is the mean of s_1 random variables $X_{ij}, 1 \leq j \leq s_1$. All X_{ij} are independent identically distributed random variables. Each $X = X_{ij}$ is calculated in the same way as follows: Choose random $p \in [1, \dots, m]$, and then see the value of a_p . Maintain $r = |\{q | q \geq p \text{ and } a_q = a_p\}|$. Define $X = m(r^k - (r-1)^k)$.

- Note that in order to calculate X , we only require storing a_p (i.e. $\log n$ bits) and r (i.e. at most $\log m$ bits). Hence the Each $X = X_{ij}$ is calculated in the same way using only $O(\log n + \log n)$ bits.
- For simplicity we assume the input stream length m is known but it can be estimated and updated as the stream unfolds.
- We need to show that $\mathbf{E}[X] = F_k$ and that the variance $\text{Var}[X]$ is small enough so as to use the Chebyshev inequality to show that $\text{Prob}[|Y_i - F_k| > \epsilon F_k]$ is small.

AMS analysis sketch

- Showing $E[X] = F_k$.

$$\frac{m}{m}[(1^k + (2^k - 1^k) + \dots + (m_1^k - (m_1 - 1)^k)) +$$

$$(1^k + (2^k - 1^k) + \dots + (m_2^k - (m_2 - 1)^k)) + \dots \dots +$$
$$(1^k + (2^k - 1^k) + \dots + (m_n^k - (m_n - 1)^k))]$$

(by telescoping)

$$= \sum_i^n m_i^k$$

$$= F_k$$

AMS analysis continued

- Y is the median of the Y_i . It is a standard probabilistic idea that the median Y of identical r.v.s Y_i (each having constant probability of small deviation from their mean F_k) implies that Y has a high probability of having a small deviation from this mean.
- $E[Y_i] = E[X]$ and $Var[Y_i] \leq Var[X]/s_1 \leq E[X^2]/s_1$.
- The result needed is that $Prob[|Y_i - F_k| > \epsilon F_k] \leq \frac{1}{8}$
- The Y_i values are an average of independent $X = X_{ij}$ variables but they can take on large values so that instead of Chernoff bounds, AMS use the Chebyshev inequality:

$$Prob[|Y - E[Y]| > \epsilon E[Y]] \leq \frac{Var[Y]}{\epsilon^2 E[Y]}$$

- It remains to show that $E[X^2] \leq kF_1F_{2k-1}$ and that $F_1F_{2k-1} \leq n^{1-1/k}F_k^2$

Sketch of F_2 improvement

- They again take the median of $s_2 = 2 \log(\frac{1}{\delta})$ random variables Y_i but now each Y_i will be the sum of only a constant number $s_1 = \frac{16}{\epsilon^2}$ of identically distributed $X = X_{ij}$.
- The key additional idea is that X will not maintain a count for each particular value separately but rather will count an appropriate sum $Z = \sum_{t=1}^n b_t m_t$ and set $X = Z^2$.
- Here is how the vector $\langle b_1, \dots, b_n \rangle \in \{-1, 1\}^n$ is randomly chosen.
- Let $V = \{v_1, \dots, v_h\}$ be a set of $O(n^2)$ vectors over $\{-1, 1\}$ where each vector $v_p = \langle v_{p,1}, \dots, v_{p,n} \rangle \in V$ is a 4-wise independent vector of length n .
- Then p is selected uniformly in $\{1, \dots, h\}$ and $\langle b_1, \dots, b_n \rangle$ is set to v_p .