CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 10

Allan Borodin

March 24, 2016

Announcements and todays agenda

@ Announcements

o

©0

| now have three sets of slides for the guest lecture (Lecture 8) by
Aleksander Nikolov on the use of linear discrepency in algorithm
design. | had hoped to have them posted by last weekend but now |
am aiming for this weekend.

Assignment 2 due today, March 24.

The deadline for submitting undergradute grades (for graduating
students) is May 6. | would like to submit grades for everyone before
that, let's say by May 2.

| am setting April 14 as the due date for assignment 3. | have posted
the first two questions for assignment 3. Depending on the length of
the assignment, | might extend the date but want to make sure Nicolas
has the time to grade the assignment.

@ Todays agenda

Sublinear space and time algorithms.

)

30

Sublinear time and sublinear space algorithms

We now consider contexts in which randomization is provably more
essential. In particular, we will study sublinear time algorithms and then
the (small space) streaming model.

@ An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. As such an algorithm must provide an answer
without reading the entire input.

@ Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.

@ The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.

@ The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.

@ This topic will take us beyond search and optimization problems.

A deterministic exception: estimating the diameter
in a finite metric space

@ We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

@ Suppose we are given a finite metric space M (with say n points x;)
where the input is given as n? distance values d(xi, xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

@ For this maximum diameter problem, there is a simple O(n) time (and
hence sublinear in n?, the number of distances) algorithm; namely,
choose an arbitrary point x € M and compute D = max; d(x, x;). By
the triangle inequality, D is a 2-approximation of the diameter.

@ | say sublinear time in a weak sense because in an implicitly
represented distance function (such as d dimensional Euclidean
space), the points could be explicitly given as inputs and then the
input size is n and not n?.

Sampling the inputs: some examples

@ The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

@ We will consider the following examples:

© Finding an element in an (anchored) sorted linked list
[Chazelle,Liu,Magen]

@ Estimating the average degree in a graph [Feige 2006]

© Estimating the size of some maximal (and maximum) matching
[Nguyen and Onak 2008] in bounded degree graphs.

© Examples of property testing, a major topic within the area of sublinear
time algorithms. See Dana Ron’s DBLP for many results and surveys.

Finding an element in an (anchored) sorted list

@ Suppose we have an array A[i] for 1 < i < n where each A[f] is a pair
(xi, pi) with x; = min{x;} and p; being a pointer to the next smallest
value in the linked list.

@ That is, xp, = min{xj|x; > x;}. (For simplicity we are assuming all x;
are distinct.)

@ We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = x;.

A /n algorithm for searching in an anchored sorted linked list

If x < x1, then x is not in the list.

Let R = {ji|0 < i < /n} be y/n randomly chosen indices plus the index 1.
Access these {A[ji]} to determine k such that xj is the largest of the
accessed array elements less than or equal to x.

From A[k], search forward 2+/n steps in list to see if and where x exists

v

Claim:

This is a one-sided error algorithm that (when x € {A[i]}) will fail to
return j such that x = A[j] with probability at most 1/2. 6/3

Estimating average degree in a graph

@ Given a graph G = (V, E) with |V| = n, we want to estimate the
average degree d of the vertices.

@ We want to construct an algorithm that approximates the average

degree within a factor less than (2 + ¢) with probability at least 3/4 in

time O(v/)- We will assume that we can access the degree d; of
poly(e)

any vertex v; in one step.
@ Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/€ random subsets S; of V' each of size (say) g
Compute the average degree a; of nodes in each S;.
The output is the minimum of these {a;}.

30

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But we will show that with
high probability these estimates will not be too bad. More precisely, we
need:

Q Lemma 1: Probla; < 3(1—e€)d] < &
@ Lemma 2: Prob[a; > (1 +€)d] <1—§

The probability bound in Lemma 2 is amplified as usual by repeated trials.
For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

Understanding the input query model

As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.
Feige's [2006] algorithm for estimating the average degree uses only
“degree queries”; that is, “what is the degree of a vertex v".

Feige shows that in this degree query model, any algorithm that
acheives a (2 — €) approximation (for any € > 0) requires time Q(n).
In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v,J), the query oracle returns the j* neighbour of v or a special
symbol indicating that v has degree less than j. A degree query can
be simulated by log n neighbour queries.

Goldreich and Ron show that in the neighbour query model, that the
average degree d can be (1 4 ¢) approximated (with one sided error
probability 2/3) in time O(y/npoly(log n, 1))

They show that Q(+/(n/€)) queries is necessary to achieve a (1 + ¢)

approximation.
9/30

Approximating the size of a maximum matching in a
bounded degree graph

@ We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching. Let m be smallest possible
maximal matching.

@ Our goal is to compute with high probability a maximal matching in
time depending only on the maximium degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {e;}

% Note: this will be done “on the fly” as needed

The permutation determines a maximal matching M as given by the
greedy algorithm that adds an edge whenever possible.

Choose r = O(D/€?) nodes {v;} at random

Using an “oracle” let X; be the indicator random variable for whether
or not vertex v; is in the maximal matching.

Output m =) Xi

i=1...r

10/30

Performance and time for the maximal matching

Claims
Q@ m < m< m+en where m=|M|.
@ The algorithm runs in time 20(P) /¢2

@ This immediately gives an approximation of the maximum matching
m* such that m* < m <2m* +en

@ A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result
Let §,e > 0 and let k = [1/d]. There is a randomized one sided algorithm

k
(with probability 2/3) running in time £+1 that outputs a maximium
E
matching estimate M such that m* < m < (14 6)m* + en.

11/30

Property Testing

@ Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

@ Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite) or is
in some sense far away from that property.

@ The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “e-far” from having the property. The tester
can answer either way if G does not have the property but is
“e-close” to having the property.

@ We will usually have a 1-sided error in that we will always answer YES
if G has the property.

@ We will see what it means to be “e-far” (or close) from a property by
some examples. See also question 2 in assignment 3.

12/30

Tester for linearity of a function

o Let f:Z,— > Z,; fislinear if Vx,y f(x +y) = f(x)+ f(y) .
@ Note: this will really be a test for group homomorphism
@ f is said to be e-close to linear if its values can be changed in at most

a fraction € of the function domain arguments (i.e. at most en
elements of Z,) so as to make it a linear function. Otherwise f is said

to be e-far from linear.

The tester
Repeat 4/¢ times
Choose x,y € Z, at random
If f(x)+ f(y) # f(x+y)
then Output f is not linear
End Repeat If all these 4 /¢ tests succeed then Output linear

@ Clearly if f is linear, the tester says linear.
@ For e < 2/9, if f is e-far from being linear then the probability of
detecting this is at least 2/3.

13 /30

Testing a list for monotonicity

@ Given a list A[i] = x;,i = 1...n of distinct elements, determine if A is
a monotone list (i.e. i <j = A[i] < A[j]) or is e-far from being
monotone in the sense that more than € x n list values need to be
changed in order for A to be monotone.

@ The algorithm randomly chooses 2/¢ random indices i and performs
binary search on x; to determine if x; in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

@ Clearly the time bound is O(log n/¢€) and clearly if A is monotone
then the tester reports monotone.

o If Ais e-far from monotone, then the probability that a random binary

search will succeed is at most (1 — €) and hence the probability of the

. . L 2
algorithm failing to detect non-monotonicity is at most (1 —¢€)e < é

14 /30

Graph Property testing

@ Graph property testing is an area by itself. There are several models
for testing graph properties.

o Let G = (V,E) with n=|V| and m = |E|.

@ Dense model: Graphs represented by adjacency matrix. Say that

graph is e-far from having a property P if more than en® matrix
entries have to be changed so that graph has property P.

@ Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is e-far from property P is at least em edges
have to be changed.

@ In general there are substantially different results for these two graph
models.

15/30

The property of being bipartite

@ In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

1
Pick a random subset S of vertices of size r = @(bge#)

Output bipartite iff the induced subgraph is bipartite

@ Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

@ The claim is that if G is e-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

@ The algorithm runs in time quadratic in the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).

16 /30

Testing bipartiteness in the bounded degree model

@ Even for degree 3 graphs, Q(1/n) queries are required to test for being
bipartite or e-far from being being bipartite. Goldreich and Ron [1997]

@ There is a nearly matching algorithm that uses O(+y/npoly(log n/e))
queries. The algorithm is based on random walks in a graph and
utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/¢) times

Randomly select a vertex s € V

If algorithm OddCycle(s) returns cylce found then REJECT
End Repeat
If case the algorithm did not already reject, then ACCEPT

V.

@ OddCycle performs poly(log n/€) random walks from s each of length
poly(log n/€). If some vertex v is reached by both an even length and
an odd length prefix of a walk then report cycle found; else report odd
cycle not found

17 /30

Sublinear space: A slight detour into complexity
theory

@ Sublinear space has been an important topic in complexity theory
since the start of complexity theory. While not as important as the
P = NP or NP = co — NP question, there are two fundamental space
questions that remain unresolved:

Q Is NSPACE(S) = DSPACE(S) for S > logn ?
@ Is P contained in DSPACE (log n) or U, SPACE (log® n)? Equivalently,
is P contained in polylogarthmic parallel time.
@ Savitch [1969] showed a non deterministic S space bounded TM can
be simulated by a deterministic S space bounded machine (for space
constructible bounds S).

@ Further in what was considered a very surprising result, Immerman
[1987] and independently Szelepcsényi [1987]
NSPACE(S) = co — NSPACE(S). (Savitch’'s result was also
considered suprising by some researchers when it was announced.)

18 /30

USTCON vs STCON

We let USTCON (resp. STCON) denote the problem of deciding if there
is a path from some specified source node s to some specified target node
t in an unidrected (resp. directed) graph G.

@ As previously mentioned the Aleliunas’ et al [1979] random walk
result showed that USTCON is in RSPACE(log n) and after a
sequence of partial results about USTCON, Reingold [2008] was
eventually able to show that USTCON is in DSPACE (log n)

@ It remains open if

© STCON (and hence NSPACE(log n)) is in RSPACE(log n) or even
DSPACE (log n).

@ STCON € RSPACE(S) or even DSAPCE(S) for any S = o(log? n)
© RSPACE(S) = DSPACE(S).

19/30

The streaming model

@ In the data stream model, the input is a sequence A of inputs
ai,...,am which is assumed to be too large to store in memory.

@ We usually assume that m is not known and hence one can think of
this model as a type of online or dynamic algorithm that is
maintaining (say) current statistics.

@ The space available S(m, n) is some sublinear function. The input
streams by and one can only store information in space S.

@ In some papers, space is measured in bits (which is what we will do)
and sometimes in words, each word being O(log n) bits.

o It is also desirable that that each input is processed efficiently, say
log(m + n) and perhaps even in time O(1) (assuming we are counting
operations on words as O(1)).

20/30

The streaming model continued

@ The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular element(s) of the data stream.

@ Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V, E), the goal is to
obtain a good approximation using space O(|V/|) rather than O(|E|).

@ Most results concern the space required for a one pass algorithm. But
there are other results concerning the tradeoff between the space and
number of passes.

21/30

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing element problem

Suppose we are given a stream A = a;,...,a,_1 and we are promised that
the stream A is a permutation of {1,...,n} — {x} for some integer x in
[1, n]. The goal is to compute the missing x.

@ Space n is obvious using a bit vector ¢; = 1 iff j has occured.
@ Instead we know that 3 ;.4 = n(n+1)/2 — x.
Soifs=3;caai, then x=n(n+1)/2 —s.
This uses only 2log n space and constant time/item.

Generalizing to k missing elements

Now suppose we are promised a stream A of length n — k whose elements
consist of a permutation of n— k distinct elements in {1,...,n}. We want
to find the missing k elements.

@ Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of jth
powers (1 <j < k) 5= Y ica(aif = ¢j(n) — 204 x!- Here ¢i(n) is
the closed form expression for -7 _; /. This results in k equations in
k unknowns using space k2 log n but without an efficient way to
compute the solution.

@ As far as | know there may not be an efficient small space streaming
algorithm for this problem.

@ Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Q(k log(n/k)) space is
necessary.

23 /30

Some well-studied streaming problems

o Computing frequency moments. Let A= a;...a, be a data stream
with a; € [n] ={1,2,...n}. Let m; denote the number of occurences
of the value i in the stream A. For k > 0, the kt" frequency moment
is Fy = Z,-e[n](m,-)k. The frequency moments are most often studied
for integral k.

© F1 = m, the length of the sequence which can be simply computed.

@ Fo is the number of distinct elements in the stream

© F; is a special case of interest called the repeat index (also known as
Ginis homogeneity index).

o Finding k-heavy hitters; i.e. those elements appearing at least n/k
times in stream A.

@ Finding rare or unique elements in A.

24 /30

What is known about computing F.?

Given an error bound € and confidence bound ¢, the goal in the frequency
moment problem is to compute an estimate F; such that
Prob[|Fi — F}| > eFi] <.

@ The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

@ For k > 3, there is an O(m'~1/¥) space algorithm. The O notation
hides factors that are polynomial in % and polylogarithmic in m, n, %.

© For k=0 and every ¢ > 2, there is an O(log n) space algorithm
computing F} such that
Prob|(1/c)Fo < F} < cFy does not hold] < 2/c.

© For k =1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(loglogn + 1/¢)

Q For k = 2, they obtain space O(1) = O(Iogéig/&)(log n+ log m))
© They also show that for all k > 5, there is a (space) lower bound of
Q(ml—s/k).

25 /30

Results following AMS

@ A considerable line of research followed this seminal paper. Notably
settling conjectures in AMS:

@ The following results apply to real as well as integral k.

@ An Q(m'2/k) space lower bound for all k > 2 (Bar Yossef et al
[2002]).

@ Indyk and Woodruff [2005] settle the space bound for k > 2 with a
matching upper bound of O(m!~2/k)

@ The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close to Fy

and variance is sufficiently small such that this r.v. can be calculated
under the space constraint.

@ We will just sketch the (non optimal) AMS results for Fy for k > 2
and the result for F,.

26 /30

The AMS F algorithm

Let 51 = (E%mlfi)/é2 and sp = 2|og%.

AMS algorithm for F

The output Y of the algorithm is the median of s, random variables

Y1, Y2,, Ys, where Y is the mean of s; random variables Xj;,1 < j < 5
. All Xj; are independent identically distributed random variables. Each

X = Xijj is calculated in the same way as follows: Choose random

p € [1,...,m], and then see the value of a,. Maintain

r=1{qlg > p and a; = a,}|. Define X = m(rk — (r — 1)¥).

@ Note that in order to calculate X , we only require storing a, (i.e.
log n bits) and r (i.e. at most log m bits). Hence the Each X = Xj; is
calculated in the same way using only O(log n + log n) bits.

@ For simplicity we assume the input stream length m is known but it
can be estimated and updated as the stream unfolds.

@ We need to show that E[X] = Fjx and that the variance Var[X] is
small enough so as to use the Chebyshev inequality to show that
Prob||Y; — Fi| > €F is small.

AMS analysis sketch
@ Showing E[X] = Fy.
CIER Q) (mf — (- D)

A+ =1+ o+ (ms—(my— 1))+ .+
(1 4+ 5 =19 + ..+ (mf = (mn = 1)))]

(by telescoping)

28 /30

AMS analysis continued

Y is the median of the Y;. It is a standard probabilistic idea that the
median Y of identical r.v.s Y; (each having constant probability of
small deviation from their mean Fy) implies that Y has a high
probability of having a small deviation from this mean.

E[Yi] = E[X] and Var[Y;] < Var[X]/s1 < E[X?]/s1.

The result needed is that Probl|Y; — Fy| > €Fy] < &

The Y; values are an average of independent X = Xj; variables but
they can take on large vales so that instead of Chernoff bounds, AMS
use the Chebyshev inequality:

Var[Y]
e2E[Y]

Prob[|Y — E[Y]| > €E[Y]] <

It remains to show that E[X?] < kF1Fp,_1 and that
FiFok—1 < nt=Y/kF2

29/30

Sketch of F, improvement

@ They again take the median of s, = 2|og(%) random variables Y; but
now each Y; will be the sum of only a constant number s; = g of
identically distibuted X = Xj;.

@ The key additional idea is that X will not maintain a count for each
particular value separately but rather will count an appropriate sum
Z =37 bem; and set X = Z°.

@ Here is how the vector < by, ..., b, >€ {—1,1}" is randomly chosen.

o Let V =1{v,...,v;} be aset of O(n?) vectors over {—1,1} where
each vector v, =< vp1,...,Vpn >€ V is a 4-wise independent vector
of length n.

@ Then p is selected uniformly in {1,..., h} and < by,..., b, > is set
to vp.

30/30

