CSC2420: Algorithm Design, Analysis and Theory
Spring (or Winter for pessimists) 2016

Allan Borodin and Nicolas Pena (TA)

January 14, 2016

/30

Lecture 1

Course Organization:

© Sources: No one text; lots of sources including specialized graduate
textbooks, my posted lecture notes (beware typos), lecture notes
from other Universities, and papers. Very active field. Foundational
course but we will discuss some recent work and research problems.

@ Lectures and Tutorials: One two hour lecture per week with
tutorials as needed and requested; TA is Nicolas Pena.

© Grading: Will depend on how many students are taking this course
for credit. In previous offerings there were three assignments with an
occasional opportunity for some research questions. | may have to
have some more supervised aspect to the grading depending on
enrollment.

@ Office hours: My regular office hours are Tuesdays 2-4. But mainly,
when | am in my door is open and | welcome questions (unless | am
preoccupied). So feel free to drop by and/or email me to schedule a
time. My office is SF 2303B and my email is bor@cs.toronto.edu. The

course web page is www.cs.toronto.edu/~bor/2420s16a
2/30

What is appropriate background?

@ In short, a course like our undergraduate CSC 373 is essentially the
prerequisite.

@ Any of the popular undergraduate texts. For example, Kleinberg and
Tardos; Cormen, Leiserson, Rivest and Stein; DasGupta,
Papadimitriou and Vazirani.

@ It certainly helps to have a good math background and in particular
understand basic probability concepts, and some graph theory.

BUT any CS/ECE/Math graduate student (or mathematically oriented
undergrad) should find the course accessible and useful. J

Comments and disclaimers on the course perspective

@ This is a graduate level “foundational course”. However, | will focus
somewhat on my current research perspective; this then does not
represent a standard introduction to the field.

@ But in my defense, perhaps most graduate algorithms courses are
biased towards some research perspective. | do not think there is a
standard course in the same way that the previously mentioned texts
represent a standard for an undergraduate course.

@ Given that CS might be considered (to some extent) The Science and
Engineering of Algorithms, one cannot expect any comprehensive
introduction to algorithm design and analysis. Even within theoretical
CS, there are many focused courses and texts for particular subfields;
e.g. randomized algorithms, approximation algorithms, linear
programming (and more generally mathematical programming),
online algorithms, parallel algorithms, streaming algorithms, sublinear
time algorithms.

@ | have added the word theory to the course title to reflect my interest

in making generally informal concepts a little more precise.
4/30

Reviewing some basic algorithmic paradigms

We begin with some “conceptually simple” search/optimization algorithms.

The conceptually simplest “combinatorial” algorithms

Given an optimization problem, it seems to me that the conceptually
simplest approaches are:

@ brute force search
@ greedy

@ local search

Comment

@ We usually dismiss brute force as it really isn't much of an algorithm
approach but might work for small enough problems.

@ Moreover, sometimes we can combine some aspect of brute force

search with another approach as we will see by combining brute force
and greedy.

Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.
The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.
The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

@ Huffman’s algorithm for optimal prefix codes.

@ Graham's online and LPT approximation algorithms for makespan

minimization on identical machines.

The 2-approximation for unweighted vertex cover via maximal
matching.

The "natural greedy” In(m) approximation algorithm for set cover.

6

30

Greedy algorithms:
Graham'’s online and LPT makespan algorithms

@ Let's start with these two greedy algorithms that date back to 1966
and 1969 technical reports.

@ These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn't use that terminology).

@ This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).

@ Moreover, there are some general concepts to be observed in this

work and even after nearly 50 years still some open questions
concerning such makespan problems.

The makespan problem for identical machines

@ The input consists of n jobs J = J; ..., J, that are to be scheduled
on m identical machines.

@ Each job Jy is described by a processing time (or load) pg.

@ The goal is to minimize the latest finishing time (maximum load) over
all machines.

@ That is, the goal is a mapping o : {1,...,n} — {1,..., m} that

minimizes maxy (Zm(z):k pg).

makespan

i

[picture taken from Jeff Erickson’s lecture not%’s]30

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job J; on any machine having the least load thus far.

@ We will see that the approximation ratio for this algorithm is 2 — %;

that is, for any set of jobs 7, Cgreedy(J) < (2 — L) Copr(J).
» Ca denotes the cost (or makespan) of a schedule A.
» OPT stands for any optimum schedule.

e Basic proof idea: OPT > (3_; p;)/m; OPT > max;p;
What is Cgreedy in terms of these requirements for any schedule?

j < OPT

makespan

< OPT

i

[picture taken from Jeff Erickson’s lecture notesho

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job J; on any machine having the least load thus far.

@ In the online “competitive analysis” literature the ratio Cg;‘T is called
the competitive ratio and it allows for this ratio to just hold in the
limit as Copr increases. This is the analogy of asymptotic

approximation ratios.

NOTE: Often, | will not provide proofs in the lecture notes but rather will
do or sketch proofs in class (or leave proof as an exercise).

@ The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

@ This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.

10/30

Graham’s LPT algorithm

Sort the jobs so that p; > po... > p, and then greedily schedule jobs on
the least loaded machine.

@ The (tight) approximation ratio of LPT is (% — %)

@ It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

@ We will present the priority model for greedy (and greedy-like)
algorithms. | claim that all the algorithms mentioned on slide 6 can
be formulated within the priority model.

@ Asssuming we maintain a priority queue for the least loaded machine,

» the online greedy algorithm would have time complexity O(nlog m)
which is (nlog n) since we can assume n > m.
» the LPT algorithm would have time complexity O(nlog n).

11/30

Partial Enumeration Greedy

@ Combining the LPT idea with a brute force approach improves the
approximation ratio but at a significant increase in time complexity.

@ | call such an algorithm a “partial enumeration greedy” algorithm.

Optimally schedule the largest k jobs (for 0 < k < n) and then greedily
schedule the remaining jobs (in any order). J

1
@ The algorithm has approximation ratio no worse than (1 + M)

@ Graham also shows that this bound is tight for k =0 mod m.
@ The running time is O(m* + nlog n).
@ Setting k = %m gives a ratio of at most (1 + €) so that for any

fixed m, this is a PTAS (polynomial time approximation scheme).
with time O(m™/€ + nlog n).

12/30

Makespan: Some additional comments

@ There are many refinements and variants of the makespan problem.

@ There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the makespan problem.

@ The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m > 4.
Basic idea: leave some room for a possible large job; this forces the
online algorithm to be non-greedy in some sense but still within the
priority model which subsumes online algorithms.

@ Randomization can provide somewhat better competitive ratios.

@ Makespan has been actively studied with respect to three other
machine models.

13/30

The uniformly related machine model

Each machine i has a speed s;
Recall that each job J; is described by a processing time or load p;.

The processing time to schedule job J; on machine i is p;/s;.

There is an online algorithm that achieves a constant competitive
ratio.

@ | think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al.

@ Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.428 inapproximation of Berman et al.

14 /30

The restricted machines model

@ Every job J; is described by a pair (p;j, Sj) where S5; C {1,...,m} is
the set of machines on which J; can be scheduled.

@ This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.

@ Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting problem and we will look
at some recent work later.

@ Azar et al show that log,(m) (resp. In(m)) is (up to +1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.

@ It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Q(lolg()i;nm) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable
machines.

15/30

The unrelated machines model

@ The most general of the machine models.

@ Now a job J; is represented by a vector (pj 1, ..., pjm) Where p; ; is
the time to process job J; on machine i.

@ A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

@ There is an online algorithm with approximation O(log m). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard (which we will discuss later).

@ NOTE: All statements about what we will do later should be
understood as intentions and not promises.

16 /30

The knapsack problem

The knapsack problem
@ Input: Knapsack size capacity C and n items Z = {h,..., I} where
li = (vj, s;) with v; (resp. s;) the profit value (resp. size) of item ;.
o Output: A feasible subset S C {1,..., n} satsifying 3 ;g5 < C so
as to maximize V/(S) =3 ;s V).

Note: | would prefer to use approximation ratios r > 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios p < 1 for maximization problems; i.e.
ALG > pOPT. For certain topics, this is the convention.

@ |t is easy to see that the most natural greedy methods (sort by
non-increasing profit densities ? sort by non-increasing profits v;,
J
sort by non-decreasing size s;) will not yield any constant ratio.

17 /30

The knapsack problem

The knapsack problem
@ Input: Knapsack size capacity C and n items Z = {h,..., I} where
li = (vj, s;) with v; (resp. s;) the profit value (resp. size) of item ;.
o Output: A feasible subset S C {1,..., n} satsifying 3 ;g5 < C so
as to maximize V/(S) =3 ;s V).

Note: | would prefer to use approximation ratios r > 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios p < 1 for maximization problems; i.e.
ALG > pOPT. For certain topics, this is the convention.

@ |t is easy to see that the most natural greedy methods (sort by
non-increasing profit densities ? sort by non-increasing profits v;,
J
sort by non-decreasing size s;) will not yield any constant ratio.

@ Can you think of nemesis sequences for these two greedy methods?

17 /30

The partial enumeration greedy PTAS for knapsack

PGreedy, Algorithm
Sort Tsothat 2 > 2...> 2

For every feasible subset H - T with |H| < k
Let R=Z7 — H and let OPTy be the optimal solution for H
Consider items in R (in the order of profit densities)
and greedily add items to OP Ty not exceeding knapsack capacity C.
% It is sufficient for the approximation ratio to stop
as soon as an item is too large to fit
End For

Output: the OPTy having maximum profit.

18 /30

Sahni’'s PTAS result

Theorem (Sahni 1975): V(OPT) < (1 + 1) V/(PGreedyy).

@ This algorithm takes time kn* and setting k = % yields a (1 +¢)
1

approximation running in time E”%'

@ An FPTAS is an algorithm achieving a (1 + €) approximation with
running time poly(n, %) There is an FPTAS for the knapsack
problem (using dynamic programming and scaling the input values) so
that the PTAS algorithm for knapsack was quickly subsumed. But
still the partial enumeration technique is a general approach that is
often useful in trying to obtain a PTAS (e.g. as we mentioned for

makespan).

@ This technique (for k = 3) was also used to achieve an _%y ~ 1.58

approximation for monotone submodular maximization subject to a
knapsack constraint. It is NP-hard to do better than a %3
approximation for submodular maximization subject to a cardinality

constraint (i.e. when all knapsack sizes are 1).

19/30

The priority algorithm model and variants

Before temporarily leaving greedy (and greedy-like) algorithms, | want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

@ What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms mentioned last class)? With the exception of
Huffman coding (which we can also deal with) all these algorithms
consider one input item in each iteration and make an irrevocable
“greedy” decision about that item..

@ We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dy
about each input item /¢ (e.g. on what machine to schedule job /y in
the makespan case) such that {(/1,D1),...,(In, Dn)} constitutes a
feasible solution.

20/30

Priority model continued

@ Note: that a problem is only fully specified when we say how input
items are represented.

@ We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn't always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as "live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation.

21/30

Greedy decisions and priority algorithms continued

@ For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)

o If we do not insist on greediness, then priority algorithms might best
have been called myopic algorithms.

@ We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).

@ The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.

@ We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.

Informal definition of a priority algorithm

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider fixed priority algorithms. Since | am using this
framework mainly to argue negative results (e.g. a priority algorithm
for the given problem cannot achieve a stated approximation ratio),
we will view the semantics of the model as a game between the
algorithm and an adversary.

Initially there is some (possibly infinite) set 7 of potential inputs.
The algorithm chooses a total ordering ™ on 7. Then the adversary
selects a subset Z C J of actual inputs so that Z becomes the input
to the priority algorithm. The input items /,..., I, are ordered
according to .

In iteration k for 1 < k < n, the algorithm considers input item /j
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision D) about this input item.

23 /30

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering w of J
Let Z C J be the input instance

S:=0 % S is the set of items already seen
i:=0 % i =1S|
while 7\ S # @ do

ii=i+1

Z:=T\S

li :=min{l € T}
make an irrevocable decision D; concerning /;
S :=SU{l;}

end

Figure : The template for a fixed priority algorithm

30

Some comments on the priority model

A special (but usual) case is that 7 is determined by a function

f: J — R and and then ordering the set of actual input items by
increasing (or decreasing) values (). (We can break ties by say using
the index of the item to provide a total ordering of the input set.)
N.B. We make no assumption on the complexity or even the
computability of the ordering 7 or function f.

NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
index of the item.

As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global

information.)
25 /30

The adaptive priority model template

J is the set of all possible input items
7 is the input instance

§$:=0 % S is the set of items already considered
i:=0 % i =S|
while Z\ S # @ do

i:=i+4+1

decide on a total ordering w; of J

Z:=T\S

li :=ming {l €T}
make an irrevocable decision D; concerning /;
S:=5U {/,}
T o= I\ 1 <, 1}
% some items cannot be in input set
end

Figure : The template for an adaptive priority algorithm

26

30

Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

© For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights v; = |f; — s;|), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

© For the knapsack problem, no priority algorithm can achieve a
constant approximation. We note that the maximum of two greedy
algorithms (sort by value, sort by value/size) is a 2-approximation.

© For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

© As previously mentioned, for fixed order priority algorithms, there is
an Q(log m/ log log m) inapproximation bound for the makespan

problem in the restricted machines model. .

Greedy algorithms for the set packing problem

The set packing problem

We are given n subsets Sy,..., S, from a universe U of size m. In the
weighted case, each subset S; has a weight w;. The goal is to choose a
disjoint subcollection S of the subsets so as to maximize » s s w;. In the
s-set packing problem we have |S;| <'s for all /.

@ This is a well studied problem and by reduction from the max clique
problem, there is an m>~¢ hardness of approximation assuming
NP # ZPP. For s-set packing, there is an Q(s/logs) hardness of
approximation assuming P # NP.

@ Set packing is the underlying allocation problem in what are called
combinatorial auctions as studied in mechanism design.

@ We will consider two “natural” greedy algorithms for the s-set
packing problem and a somewhat less obvious greedy algorithm for
the set packing problem. These greedy algorithms are all fixed order
priority algorithms.

28 /30

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedy,:

Sort the sets so that w; > ws ... > w,,.
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SU§S;.
End For

@ In the unweighted case (i.e. Vi, w; = 1), this is an online algorithm.

@ In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

@ The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

29/30

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size
Sort the sets so that wy/|S1| > wa/|S2| ... > wa/|Sal.
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SUS§S,.
End For

@ In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

@ For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, greedy-by-weight-per-size is only an m-approximation
where m = |U|.

@ We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation.

30/30

	Lecture 1

