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Overview

CHARACTERIZATIONS OF VARIOUS GRAPH SEARCHES

LDFS and Maximal Neighbourhood Search

COCOMPARABILITY GRAPHS AND LDFS

Minimum path cover problem

Other cocomparability problems

HEURISTIC APPLICATIONS OF BFS

OPEN QUESTIONS
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Vertex Ordering Characterizations of Various Graph
Searches - Joint work with Richard Krueger.

Yesterday we saw:

THEOREM (Golumbic; Dragan, Nicolai + Brandstadt):
An ordering σ is an LBFS ordering iff for all a <σ b <σ c where ac ∈ E ,
ab /∈ E , there exists d <σ a such that db ∈ E , dc /∈ E .

a b c

and asked if there are such characterizations for other graph searches.
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CHARACTERIZATIONS OF GRAPH SEARCHES
Joint work with Richard Krueger
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Maximal Neighbourhood Search

At each stage choose a vertex whose neighbourhood of previously
visited vertices is maximal by set inclusion.

MNS contains LBFS, LDFS and MCS.

MNS was first studied by Shier in his work on generating all PEOs of
a chordal graph.

THEOREM [Shier]:

For any MNS consider the step when a vertex is chosen as one that
has a maximal neighbourhood in the set of visited vertices. Replace
that step with:

Let {Ci} be the connected components of G [V ′].
Choose a vertex v in any Ci such that of all the vertices in Ci , v has a
maximal neighbourhood in the set of visited vertices.

Then the resulting MNS? can generate all PEOs of G .
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MNS Cont.d

This 4-vertex condition was first discovered by Rose, Tarjan and Lueker
where they showed that G is chordal iff any search satisfying the 4-vertex
condition is a PEO!

There is no evidence that they realized that the 4-vertex condition
characterized MNS.
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Lexicographic Depth First Search (LDFS)

Roughly speaking, LDFS is a DFS where ties are broken to favour vertices
with recently visited neighbours.

COMPLETE the LDFS

1

2a

b

c

τ = 1 2 ?
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Lexicographic Depth First Search (LDFS)

COMPLETE the LDFS

1

2a

b

c

τ = 1 2 b c a
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Lexicographic Depth First Search (LDFS):

Input: Graph G (V , E )
Output: Vector σ where σ(i) is the i’th vertex chosen

1 V ′ ← V {V ′ is the set of unchosen vertices}
2 Step 1: D is a set of vertices, each with a label consisting of a string

of decreasing positive integers; initially D contains all vertices in V ′,
each with label ε

3 for i = 1 to n do

4 Step 2: v chosen from S ← the set of vertices of D with
lexicographically largest label

5 σ(i)← v

6 V ′ ← V ′ − {v}
7 Step 3: D ← D − {v}, and prepend label i to the label of all

vertices in N(v) ∩ V ′

8 end for
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Example of LDFS
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Example of LDFS
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Example of LDFS
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f ε ε ε 1 1

d 2 2 ε 21
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Example of LDFS

a
b
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d
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v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 1 1

d 2 2 ε 21

b 2 32 3
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Example of LDFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 1 1

d 2 2 ε 21

b 2 32 3

c 42 43
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Example of LDFS

a
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Implementations of LDFS

Note that there is a partition refinement implementation but the
refinement is not done in situ. Hence the apparent need to sort.

The running time of this algorithm is O(min{n2, n + mlogn}).

The current fastest implementation of LDFS is
O(min{n2, n + mloglogn}) by Jerry Spinrad and an anonymous
referee of our paper. They used van Emde Boas trees.
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Are there any applications of LDFS? First Attempts

What about LDFS+ to find a Hamiltonian Path in an Interval Graph,
starting with an I ORDER?
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Complete failure - BUT, DFS+ seems to work!
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Michel Habib and I convinced ourselves that this algorithm is correct
and then turned our attention to cocomparability graphs.

M.Sc. student, Barnaby Dalton, then looked at the Hamiltonian Path
Problem for interval graphs.

DEFINITION: Minimum Path Cover (MPC): As few paths as possible
such that every vertex of G is in exactly one such path - this problem
is NP-complete for arbitrary given graphs.

Note that this is a generalization of the Hamiltonian Path Problem
and that DFS+ fails for the MPC problem - Right Most Neighbour is
needed instead.

The MPC problem had been solved for cocomparability graphs but
only via the equivalent Bump Number problem for posets.

It has been an open question for over 20 years whether there is a
“direct” graph algorithm.
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Are there any applications of LDFS?

DEFINITION: G (V , E ) is a cocomparability graph if its complement
G has a transitive orientation of its edges (i.e., if x → y and y → z
then x → z).

Notice the close tie between comparability graphs and partially
ordered sets (posets).

Unit Interval Graphs ⊂ Interval Graphs ⊂ cocomparability graphs ⊂
AT-free Graphs.

OBSERVATION: G is cocomparability iff there is an ordering of V
such that for all x < y < z , xz ∈ E implies xy ∈ E OR yz ∈ E OR
both (COCOMP order).
Note how this generalizes the interval order condition.
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MPC algorithm for interval graphs

1 Let π be an arbitrary I ORDER

2 Let τ be the Right Most Neighbour (RMN) sweep of π [S. Rao
Arikati + C. Pandu Rangan; P. Damaschke]

3 If τ is not a Hamiltonian Path, then from τ construct a separator S
that certifies that τ is a Minimum Path Cover [B. Dalton]. In
particular, S achieves the “scattering number”.

#of paths in τ = # of connected components (G \ S)− |S |

S S

|S| = 2;#cc = 5 mpc# ≥ 5− 2(= 3)
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Example
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Example
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Attempt to solve the problem for cocomparability graphs

1 Let π be an arbitrary COCOMP order

2 Do as many LBFS+s as necessary to end up with “good” sweep σ
(Note: an LBFS+ of a COCOMP order is still a COCOMP order)

3 Let τ be the Right Most Neighbour (RMN) sweep of σ. Possibly
more than one RMN sweeps.

4 If τ is not a Hamiltonian Path, then from τ construct a separator S
that certifies that τ is a Minimum Path Cover. (Such an S exists, by
previous work of Habib et al.)
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BUT!
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For no LBFS COCOMP order of this graph can an RMN produce a
Hamiltonian path!

For example:
σ = 1 2 3 4 5 6 7 8
τ = 8 7 6 5 2 4 3 || 1
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Could LDFS+ work?

Simplest possible algorithm

1 Let π be an arbitrary COCOMP order

2 Let σ be LDFS+(π)
3 Let τ be RMN(σ)
4 If τ is not a Hamiltonian Path, then from τ, use Dalton’s algorithm

to construct a separator S that certifies τ

Note that we’re not trying to construct the MPC via LDFS but rather
we’re treating LDFS+ as a preprocessing step in the hope that it would
capture the “interval structure of cocomparability graphs”, at least from
the perspective of the MPC problem.
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Old example
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π = 1 2 3 4 5 6 7 8 (arbitrary cocomp order)
σ = 8 7 6 5 2 3 4 1 (LDFS+ of π)
τ = 1 2 4 3 6 5 7 8 (RMN of σ) !
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Could this algorithm possibly work?

Consider:

Why doesn’t the interval graph algorithm require an LDFS+

preprocessing step?
Every I-ORDER is automatically both an LBFS and an LDFS.

Is an LDFS+ of a COCOMP order a COCOMP order?
YES! - and so is an RMN of a COCOMP order.

Does an LDFS COCOMP order have any special properties?
Yes, the “C4 property”.
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The “C4 property”

Since an I-ORDER is a PEO, an I-ORDER cannot have:

a b c
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The “C4 property”

Since an I-ORDER is a PEO, an I-ORDER cannot have:

a b c

What about an LDFS COCOMP order - is there a similar result?

a b cd

LDFS: ∃d , a < d < b | bd ∈ E ∧ dc /∈ E
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The “C4 property”

Since an I-ORDER is a PEO, an I-ORDER cannot have:

a b c

What about an LDFS COCOMP order - is there a similar result?

a b cd

LDFS: ∃d , a < d < b | bd ∈ E ∧ dc /∈ E
COCOMP: ad ∈ E

Note the C4 on {a, b, c , d}
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MPC cocomp algorithm

1 Let π be an arbitrary COCOMP order

2 Let σ be LDFS+(π)
3 Let τ be RMN(σ)
4 If τ is not a Hamiltonian Path, then from τ, use Dalton’s algorithm

to construct a separator S that certifies τ

The algorithm works.

It also gives us a scattering set for G . (i.e., a set S that maximizes
|#cc{G \ S} − |S | |)
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Notes about this algorithm

McConnell and Spinrad have a linear time algorithm that given a
cocomparability graph produces a cocomp order. If the graph is not
cocomparability, it produces an ordering that is not a cocomp order.

The currently known fastest algorithm to determine if a given order is
a cocomp order requires O(MM) time.

Thus the importance of having a certifying step, so that the algorithm
will either conclude that the produced path cover is of minimum
cardinality or that the order is not a cocomp order.

It’s very surprising that with an LDFS cocomp order, the interval
algorithm works perfectly on cocomparability graphs. In fact, the
certification proof is easier than for interval graphs since we knew
that the RMN sweep is a cocomp order.
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Further comments

What about the timing? Except for the LDFS+ step, the running
time is linear; the LDFS+ algorithm requires a loglogn factor over
linear time.

BUT recently Lalla Mouatadid and Ekki Koehler found a linear time
algorithm that given a cocomp order can produce different types of
LDFS cocomp orders including LDFS+.

All the algorithm needs is an arbitrary LDFS cocomp order. Thus the
running time of the algorithm is now linear.
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Are there other problems where LDFS plays such a role on
cocomparability graphs?

Longest Path: Ionnidou, Mertzios and Nikolopoulos produced an O(n4)
algorithm to find a longest path in an interval graph. George and I showed
that by using that algorithm on a LDFS cocomp order, there is an O(n4)
algorithm to find a longest path in a cocomparability graph. I & N found a
very complicated O(n7) algorithm for the longest path problem on
cocomparability graphs without using LDFS.
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Are there other problems where LDFS plays such a role on
cocomparability graphs?

Hamiltonian Cycle:
THEOREM: A cocomparability graph G has an HC iff for all v ∈ G
G \ {v} has an HP. Furthermore, if G \ {v} doesn’t have an HP,
then its scattering set certificate together with v is a toughness
certificate of no HC.

Jeremie Dusart, Ekki Koehler and I are guardedly optimistic that we
can modify Keil’s HC algorithm for interval graphs to get a linear
time algorithm for cocomparability graphs, again using an LDFS
cocomp order.

Maximum (weighted) Independent Set: To be discussed in Thursday’s
talk.
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HEURISTIC APPLICATION OF BFS

The diameter of social networks has long been of interest; “Six
degrees of separation”.

Using BFS there is a brute-force O(nm) algorithm to compute the
diameter of a graph.

P. Crescenzi, R. Grossi, M.H., L. Lanzi and A. Marino have recently
developed an algorithm, based on BFS that has worst case running
time of O(nm), but for real-world networks runs in linear time -
approximately 200 real-world graphs were tested.

The algorithm exploits the expected structure of real-world networks
that the radius is half the diameter, and that there are not a lot of
vertices of maximum eccentricity. They use a 4-sweep BFS algorithm
that hopefully finds a vertex u of eccentricity close to the radius; the
algorithm then works on u’s BFS tree, and may require more BFS
sweeps. It guarantees that the value returned is within given constant
k , k ≥ 0 of the diameter.
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HEURISTIC APPLICATION OF BFS Cont.d

Crescenzi et al. wrote: “The main contribution of this paper consists
of showing that BFS can indeed be an extremely powerful tool in
order to compute the exact value of the diameter, whenever it is used
in a more clever way.”

Recently, L. Backstrom, P. Boldi, M. Rosa, J. Ugander and S. Vigna
implemented a highly parallel version of this algorithm and studied
the full Facebook graph (approx. 721 million vertices and 69 billion
edges), as well as various country (or pair of countries) subgraphs.

They found that the average distance in the graph is 4.74 (i.e. 3.74
“degrees of separation”), and the diameter of the “giant component”
(approx. 98% of the vertices) is 41. The total number of BFS sweeps
performed was 17.
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Another application of the BFS diameter algorithm

Recently Michel and a student looked at the Stanford testbed of large
graphs and ran the BFS diameter algorithm on these graphs.

They found that for most (all?) the diameter found by their algorithm
(and guaranteed) was higher than the diameter estimate provided.

They asked how the Stanford team had estimated the diameter and
were told that 1,000 vertices were chosen at random and the diameter
estimate was the maximum of the eccentricities of these vertices.

To compute the exact diameter, the BFS diameter algorithm used on
average around 10 BFSs.
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Open Questions

1 Can the results on cocomparability graphs be extended to AT-free
graphs?

2 (Simple) linear time implementation of LDFS (even for other
restricted families of graphs)?

3 More applications of LDFS and LBFS?

4 Multi-sweep (possibly hybrid) LDFS algorithms with LBFS etc. ?

5 Other heuristic uses of graph searches?

6 What role does LDFS play with respect to posets? Discussed on
Thursday.
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5 Other heuristic uses of graph searches?
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Thank you for your attention
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