
Tutorial on Graph Searching
Part1: Background and LBFS

Derek Corneil1 and others to be named

1Computer Science, University of Toronto

Charles University
Sept. 30, 2013

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 1 / 39

Overview

BACKGROUND ON GRAPH SEARCHING

Generic search, BFS, Lexicographic BFS (LBFS)

LBFS and applications to various graph families

IMPLEMENTATION OF LBFS

labels and partition refinement

LBFS+ and unit interval graph recognition

MAJOR THEOREMS REGARDING LBFS

APPLICATIONS OF LBFS

Other early applications

Recent applications

OPEN QUESTIONS and TOPICS FOR TOMORROW

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 2 / 39

BACKGROUND ON SEARCHING

Searching a graph is a fundamental graph operation - throughout the
talk we will assume our graphs are connected

Visit every vertex and edge of G (V , E)
Interested in the order vertices are visited

BFS + DFS

Both described over a century ago for maze traversal
Many applications for both introduced in the 1970s and earlier

Generic Search:

Introduced by Tarjan in 1970s
At each stage, if possible, visit an unvisited vertex that is adjacent to
some previously visited vertex

Graph searches have the following common structure:

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 3 / 39

Search Algorithm Outline:

Input: Graph G (V , E)
Output: Vector σ where σ(i) is the i’th vertex chosen

1 V ′ ← V {V ′ is the set of unchosen vertices}
2 Step 1: Initialize data structure D {D will store a subset of V ′

including S , the set of vertices eligible to be chosen at each step of
the search}

3 for i = 1 to n do

4 Step 2: Specify S and choose v from S {“tiebreaking” if |S | > 1}
5 σ(i)← v

6 V ′ ← V ′ − {v}
7 Step 3: Update D

8 end for

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 4 / 39

Generic Search:

Input: Graph G (V , E)
Output: Vector σ where σ(i) is the i’th vertex chosen

1 V ′ ← V {V ′ is the set of unchosen vertices}
2 Step 1: D is a set initialized to specific vertex x

3 for i = 1 to n do

4 Step 2: v is chosen from S ← D

5 σ(i)← v

6 V ′ ← V ′ − {v}
7 Step 3: D ← (D − {v}) ∪ (N(v) ∩ V ′)
8 end for

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 5 / 39

Breadth First Search (BFS):

Input: Graph G (V , E)
Output: Vector σ where σ(i) is the i’th vertex chosen

1 V ′ ← V {V ′ is the set of unchosen vertices}
2 Step 1: D is a queue initialized to specific vertex x

3 for i = 1 to n do

4 Step 2: v ← S ← dequeue(D)
5 σ(i)← v

6 V ′ ← V ′ − {v}
7 Step 3: enqueue(N(v) ∩ V ′) \D) on D

8 end for

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 6 / 39

Lexicographic BFS (LBFS)

In 1976 Rose, Tarjan and Lueker introduced LBFS and proved:
G is chordal iff an arbitrary LBFS is a perfect elimination ordering (PEO).
They also showed that other searches also have this property, namely
Maximum Cardinality Search.

DEFINITIONS:

chordal: G is chordal iff there are no induced cycles of size greater
than 3. (An alternate definition of G being chordal is that G
has a Perfect Elimination Order (PEO).)

PEO: An ordering of V : v1, v2, · · · , vi , · · · vn such that the
neighbourhood of vi in Gi = G [v1, v2, · · · , vi] is a clique,
∀i , 1 < i ≤ n. (i.e., vi is simplicial in Gi).

Roughly speaking, LBFS is a BFS procedure where “ties” are broken to
favour vertices with earlier visited neighbours. Note: My orderings are Left
to Right - often see Right to Left in the literature.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 7 / 39

Lexicographic Breadth First Search (LBFS):

Input: Graph G (V , E)
Output: Vector σ where σ(i) is the i’th vertex chosen

1 V ′ ← V {V ′ is the set of unchosen vertices}
2 Step 1: D is a set of vertices, each with a label consisting of a string

of decreasing positive integers; initially D contains all vertices in V ′,
each with label ε

3 for i = 1 to n do

4 Step 2: v chosen from S ← the set of vertices of D with
lexicographically largest label

5 σ(i)← v

6 V ′ ← V ′ − {v}
7 Step 3: D ← D − {v}, and append label n− i + 1 to the label of

all vertices in N(v) ∩ V ′

8 end for

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 8 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 6 6

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 6 6

d 5 5 ε 65

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 6 6

d 5 5 ε 65

b 5 54 4

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 6 6

d 5 5 ε 65

b 5 54 4

a 53 43

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

Example of LBFS

a
b

c

d

e

f

v a b c d e f

e ε ε ε ε ε ε

f ε ε ε 6 6

d 5 5 ε 65

b 5 54 4

a 53 43

c 43

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 9 / 39

LBFS and AT-free Graphs

DEFINITION: An Asteroidal Triple (AT) is an independent triple of
vertices, such that between any two there is a path that avoids the
neighbourhood of the third.

DEFINITION: G (V , E) is AT-free if it has no AT.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 10 / 39

COCOMP CHORDAL

INTERVAL

UNIT INTERVAL

AT-FREE

Note: AT-free ∩ Chordal = Cocomp ∩ Chordal = Interval

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 11 / 39

Example: Dominating Pair in AT-free Graphs

Connected AT-free graphs have the beautiful property that they have a
Dominating Pair, namely a pair of vertices {x , y} such that every x , y
path P dominates the graph (i.e., every vertex not on P has a neighbour
that is on P).

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 12 / 39

Example: Dominating Pair in AT-free Graphs

Connected AT-free graphs have the beautiful property that they have a
Dominating Pair, namely a pair of vertices {x , y} such that every x , y
path P dominates the graph (i.e., every vertex not on P has a neighbour
that is on P). Finding a Dominating Pair: C, Olariu and Stewart

1 Let σ be an arbitrary LBFS of G that ends at x

2 Let τ be an arbitrary LBFS of G that starts at x and ends at y

3 return {x , y}

This was the first application of LBFS outside the chordal graph family.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 12 / 39

Refinement Implementation of LBFS - Habib, McConnell,
Paul + Viennot

s

a

b

c d

e

f

s a b c d e

a f b c d es

f

Refine each cell so that vertices adjacent to the pivot precede
non-adjacent vertices. If there is more than one vertex in the leftmost cell,
then choose the first one as the next pivot.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 13 / 39

Refinement Implementation of LBFS - Habib, McConnell,
Paul + Viennot

s

a

b

c d

e

f

a f b c d es

s f b e c da

Refine each cell so that vertices adjacent to the pivot precede
non-adjacent vertices. If there is more than one vertex in the leftmost cell,
then choose the first one as the next pivot.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 13 / 39

Refinement Implementation of LBFS - Habib, McConnell,
Paul + Viennot

s

a

b

c d

e

f

s f b e c da

a e b c ds f

Refine each cell so that vertices adjacent to the pivot precede
non-adjacent vertices. If there is more than one vertex in the leftmost cell,
then choose the first one as the next pivot.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 13 / 39

Refinement Implementation of LBFS - Habib, McConnell,
Paul + Viennot

s

a

b

c d

e

f

s c da

as

e b

c d

f

f be

Refine each cell so that vertices adjacent to the pivot precede
non-adjacent vertices. If there is more than one vertex in the leftmost cell,
then choose the first one as the next pivot.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 13 / 39

Refinement Implementation of LBFS - Habib, McConnell,
Paul + Viennot

s

a

b

c d

e

f

s c da

as

bf

f c d

e

be

The resulting LBFS is: s a f e b c d.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 13 / 39

Advantages of this implementation

To do an LBFS of G , just put non-adjacent vertices before adjacent
vertices. Note that this produces an LBFS of G in time that is linear
in the size of G , not G , i.e., you don’t have to calculate G .

How to break ties? Suppose that S (called a slice) is the leftmost cell
in the refinement where |S | > 1. In multi-sweep LBFS algorithms, we
often want the pivot to be the LAST vertex in the previous LBFS
search. Such an LBFS is called LBFS+. To achieve this, simply
reverse the order of the previous LBFS and use the standard
implementation with this reversed order.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 14 / 39

Advantages of this implementation

To do an LBFS of G , just put non-adjacent vertices before adjacent
vertices. Note that this produces an LBFS of G in time that is linear
in the size of G , not G , i.e., you don’t have to calculate G .

How to break ties? Suppose that S (called a slice) is the leftmost cell
in the refinement where |S | > 1. In multi-sweep LBFS algorithms, we
often want the pivot to be the LAST vertex in the previous LBFS
search. Such an LBFS is called LBFS+. To achieve this, simply
reverse the order of the previous LBFS and use the standard
implementation with this reversed order.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 14 / 39

Example of LBFS+

DEFINITION: G (V , E) is an interval graph if it is the intersection
graph of subpaths of a path; namely, each vertex represents a subpath
and two vertices are adjacent iff their subpaths intersect.

DEFINITION: G (V , E) is a unit interval graph if it is an interval
graph where all intervals are of the same length (also known as proper
interval graphs).

THEOREM: G is unit interval iff there is an ordering of V such that
for all x < y < z , xz ∈ E implies xy ∈ E AND yz ∈ E (UI ORDER)

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 15 / 39

Example of LBFS+

DEFINITION: G (V , E) is an interval graph if it is the intersection
graph of subpaths of a path; namely, each vertex represents a subpath
and two vertices are adjacent iff their subpaths intersect.

DEFINITION: G (V , E) is a unit interval graph if it is an interval
graph where all intervals are of the same length (also known as proper
interval graphs).

THEOREM: G is unit interval iff there is an ordering of V such that
for all x < y < z , xz ∈ E implies xy ∈ E AND yz ∈ E (UI ORDER)

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 15 / 39

Example of LBFS+

DEFINITION: G (V , E) is an interval graph if it is the intersection
graph of subpaths of a path; namely, each vertex represents a subpath
and two vertices are adjacent iff their subpaths intersect.

DEFINITION: G (V , E) is a unit interval graph if it is an interval
graph where all intervals are of the same length (also known as proper
interval graphs).

THEOREM: G is unit interval iff there is an ordering of V such that
for all x < y < z , xz ∈ E implies xy ∈ E AND yz ∈ E (UI ORDER)

x y z

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 15 / 39

Recognition of Unit Interval Graphs [D.C. 2004]

1 Let σ be an arbitrary LBFS of G

2 σ+ ← LBFS+(σ)
3 σ++ ← LBFS+(σ+)
4 if σ++ is a UI ORDER then “G is unit interval” else “G is not unit

interval”

a

b

c

d

eσ = c [b d] a e

σ+ = e d [b c] a

σ++ = a b [c d] e

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 16 / 39

Major Theorems regarding LBFS

THEOREM (Golumbic; Dragan, Nicolai + Brandstadt):
An ordering σ is an LBFS ordering iff for all a <σ b <σ c where ac ∈ E ,
ab /∈ E , there exists d <σ a such that db ∈ E , dc /∈ E .

a b c

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 17 / 39

Major Theorems regarding LBFS

THEOREM (Golumbic; Dragan, Nicolai + Brandstadt):
An ordering σ is an LBFS ordering iff for all a <σ b <σ c where ac ∈ E ,
ab /∈ E , there exists d <σ a such that db ∈ E , dc /∈ E .

a b cd

This property is crucial in the proofs of correctness of multi-sweep LBFS
algorithms.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 17 / 39

Major Theorems regarding LBFS - contd.

THEOREM (Chordal LBFS Lemma (C.O.S.)
Consider an arbitrary chordal graph G and two arbitrary LBFSs of G , σ
and τ. If S is a slice in σ, then τ restricted to the vertices of S is an LBFS
of the induced subgraph of G on S .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 18 / 39

Major Theorems regarding LBFS - contd.

THEOREM (Chordal LBFS Lemma (C.O.S.))
Consider an arbitrary chordal graph G and two arbitrary LBFSs of G , σ
and τ. If S is a slice in σ, then τ restricted to the vertices of S is an LBFS
of the induced subgraph of G on S .

Note that this property doesn’t even hold for cographs.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 18 / 39

Major Theorems regarding LBFS - contd.

Notation: Given an LBFS ordering σ and two vertices, u <σ v , we let Γσ
u,v

denote the smallest slice of σ containing both u and v .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 19 / 39

Major Theorems regarding LBFS - contd.

Notation: Given an LBFS ordering σ and two vertices, u <σ v , we let Γσ
u,v

denote the smallest slice of σ containing both u and v .

THEOREM: (The prior path Lemma (C.O.S.))
Let σ be an arbitrary LBFS of a graph G . Let t be the first vertex of the
connected component of Γσ

u,v containing u. Then there exists a t, u-path
in Γσ

u,v all of whose vertices, with the possible exception of u, are
nonadjacent to v . Moreover, all vertices on this path, other than u, occur
before u in σ. (Such a path is called a “prior path”.)

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 19 / 39

Definitions

Vertex x is simplicial in graph G iff the neighbourhood of x in G is a
clique.

Vertex x is admissible in graph G iff in G there does not exist vertices
y , z with x − y path P and x − z path Q where N(z) ∩ P = ∅ and
N(y) ∩Q = ∅.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 20 / 39

Major Theorems regarding LBFS - contd.

THEOREM (R.T.L.): If G is chordal, then any LBFS of G is a Perfect
Elimination Order (PEO) (i.e., every vertex is simplicial in the subgraph
induced on it and all vertices to its left in the LBFS ordering).

THEOREM (Fulkerson + Gross): G is chordal iff it has a PEO.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 21 / 39

Major Theorems regarding LBFS - contd.

THEOREM (R.T.L.) If G is chordal, then any LBFS of G is a Perfect
Elimination Order (PEO). (i.e., every vertex is simplicial in the subgraph
induced on it and all vertices to its left in the LBFS ordering).

THEOREM (Fulkerson + Gross): G is chordal iff it has a PEO.

THEOREM (C.O.S.): If G is AT-free, then any LBFS of G is an
Admissible Elimination Order (AEO). (i.e., every vertex is admissible in the
subgraph induced on it and all vertices to its left in the LBFS ordering).

Unfortunately, G having an AEO does not imply that G is AT-free. But

THEOREM (C.+ Koehler): G is AT-free iff ALL LBFSs are AEOs.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 21 / 39

Applications of LBFS

Early Applications:

Diameter Estimation: In some graph families, the last vertex of an
LBFS sweep is of high eccentricity.

Powers of Graphs: Under some conditions, an LBFS of a given graph
is a PEO of some powers of the given graph. Note that the graphs of
these powers do not have to be calculated.

Dominating Pair in AT-free Graphs: As we’ve seen.

Recognition of Restricted Graph Families: As we’ve already seen,
chordal graphs, and unit interval graphs - also distance hereditary
(considered later) and some results on interval graph recognition (also
discussed later).

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 22 / 39

Recognition of various restricted families of graphs

The general form of these algorithms is:

1 do a series of LBFS algorithms ending with a ordering τ of the
vertices of G .

2 test τ to see if it satisfies a specific property.

3 if so then accept G else reject G .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 23 / 39

What about interval graphs?

THEOREM (Raychaudhuri and others): G is an interval graph iff there is
an ordering of V such that for every triple of vertices {u, v , w} where
u < v < w , and uw ∈ E then uv ∈ E .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 24 / 39

What about interval graphs?

THEOREM (Raychaudhuri and others): G is an interval graph iff there is
an ordering of V such that for every triple of vertices {u, v , w} where
u < v < w , and uw ∈ E then uv ∈ E .

Independently various groups have conjectured that the following
algorithm recognizes interval graphs:

1 Let σ be an arbitrary LBFS of G

2 σ+ ← LBFS+(σ)
3 σ++ ← LBFS+(σ+)
4 σ+++ ← LBFS+(σ++)
5 if σ+++ is an I ORDER then “G is interval” else “G is not interval”

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 24 / 39

What about interval graphs?

THEOREM (Raychaudhuri and others): G is an interval graph iff there is
an ordering of V such that for every triple of vertices {u, v , w} where
u < v < w , and uw ∈ E then uv ∈ E .

Independently various groups have conjectured that the following
algorithm recognizes interval graphs:

1 Let σ be an arbitrary LBFS of G

2 σ+ ← LBFS+(σ)
3 σ++ ← LBFS+(σ+)
4 σ+++ ← LBFS+(σ++)
5 if σ+++ is an I ORDER then “G is interval” else “G is not interval”

BUT Ma showed that for all positive integers c , there exists an interval
graph Gc and an initial LBFS σ such that looping c times on LBFS+ will
fail the I ORDER test!

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 24 / 39

Recognition of Interval Graphs [C.O.S.]

1 Let σ be an arbitrary LBFS of G

2 σ+ ← LBFS+(σ)
3 σ++ ← LBFS+(σ+)
4 σ+++ ← LBFS+(σ++)
5 σ++++ ← LBFS+(σ+++)
6 σ∗ ← LBFS∗(σ+++, σ++++)
7 if σ∗ is an I ORDER then “G is interval” else “G is not interval”

To choose the first vertex of slice S , LBFS∗ chooses between α (the last S
vertex of σ+++ and β (the last S vertex of σ+++). There is a simple
linear time implementation of LBFS∗.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 25 / 39

Other families of graphs that have this type of LBFS
recognition algorithm

Cographs: Precisely the graphs formed as follows:

A vertex is a cograph

If G1 and G2 are cographs, so is G1 ∪ G2

If G is a cogaph, so is G

Facts about cographs:

Cographs can be represented by a cotree where the leaves are the
vertices of G and the non leaf nodes are either a “0-node”
representing disjoint union of the children or a “1-node” representing
join of the children (i.e., all edges with the endpoints in different
children).

G is a cograph iff G has no induced P4.

If T is the cotree of cograph G , then the cotree of G is T where the
0-nodes of T are replaced by 1-nodes and the 1-nodes of T are
replaced by 0-nodes.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 26 / 39

Cographs Cont.

The algorithm (Bretscher, C.H.P.) uses two LBFS sweeps, an arbitrary
LBFS σ followed by an LBFS− which is performed on G and ties are
broken by choosing the earliest S-vertex in σ.

In her Ph.D. thesis Bretscher showed that the same technique can be
applied to achieve easy linear time recognition algorithms for:

P4-reducible graphs: every vertex appears in at most one P4.

P4-sparse graphs: any set of 5 vertices induces at most one P4.

distance hereditary graphs: the distance between any two connected
vertices of an induced subgraph equals their distance in the original
graph. NOTE: for any vertex x and integer k , the set of vertices at
distance k from x induces a cograph.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 27 / 39

Applications of LBFS - Contd.

Recent Applications:

Modular Decomposition

Using LBFS as an ordering for an iterative algorithm

Split Decomposition
Circle Graph Recognition

Former Ph.D. student, Marc Tedder, is the key person in this work.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 28 / 39

Modular Decomposition (T.C.H.P.)

DEFINITION: A strict subset A of V is a module if every vertex in
V \ A is either adjacent to all vertices of A or to no vertices of A.

A
B

C

A is a module; all A ∗ B edges are present and no A ∗ C edges are
present. Note that a module is the result of replacing a vertex x
where N(x) = B by a graph A.

Modular Decomposition is the reverse operation for every nontrivial
module - this is represented by the MD-tree.
For many problems, a Divide and Conquer approach works, where we
solve the problem for every prime module and then using the MD-tree,
knit the solutions together to solve the problem for the given graph G .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 29 / 39

Modular Decomposition (T.C.H.P.)

DEFINITION: A strict subset A of V is a module if every vertex in
V \ A is either adjacent to all vertices of A or to no vertices of A.

A
B

C

A is a module; all A ∗ B edges are present and no A ∗ C edges are
present. Note that a module is the result of replacing a vertex x
where N(x) = B by a graph A.

Modular Decomposition is the reverse operation for every nontrivial
module - this is represented by the MD-tree.

For many problems, a Divide and Conquer approach works, where we
solve the problem for every prime module and then using the MD-tree,
knit the solutions together to solve the problem for the given graph G .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 29 / 39

Modular Decomposition (T.C.H.P.)

DEFINITION: A strict subset A of V is a module if every vertex in
V \ A is either adjacent to all vertices of A or to no vertices of A.

A
B

C

A is a module; all A ∗ B edges are present and no A ∗ C edges are
present. Note that a module is the result of replacing a vertex x
where N(x) = B by a graph A.

Modular Decomposition is the reverse operation for every nontrivial
module - this is represented by the MD-tree.
For many problems, a Divide and Conquer approach works, where we
solve the problem for every prime module and then using the MD-tree,
knit the solutions together to solve the problem for the given graph G .

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 29 / 39

MD contd.

Previously, complicated linear time MD algorithms were presented,
using two different techniques.

Marc developed a new version of LBFS that “back refines” as it
proceeds. The new algorithm is linear time and combines previous
techniques of factorizing permutations and recursive construction of
the MD-tree.

An earlier version of the algorithm has been implemented and users
have stated that it is much simpler than previous algorithms.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 30 / 39

MD contd.

Previously, complicated linear time MD algorithms were presented,
using two different techniques.

Marc developed a new version of LBFS that “back refines” as it
proceeds. The new algorithm is linear time and combines previous
techniques of factorizing permutations and recursive construction of
the MD-tree.

An earlier version of the algorithm has been implemented and users
have stated that it is much simpler than previous algorithms.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 30 / 39

MD contd.

Previously, complicated linear time MD algorithms were presented,
using two different techniques.

Marc developed a new version of LBFS that “back refines” as it
proceeds. The new algorithm is linear time and combines previous
techniques of factorizing permutations and recursive construction of
the MD-tree.

An earlier version of the algorithm has been implemented and users
have stated that it is much simpler than previous algorithms.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 30 / 39

Algorithm 2: Split Decomposition

Split Decomposition (E. Gioan, P.T.C.):

DEFINITION: A split of a connected graph G = (V , E) is a
bipartition (A, B) of V , where |A|, |B | > 1, such that

1 every vertex in A′ = N(B) is universal to B ′ = N(A);
2 no other edges exist between vertices in A and B.

A B

A′ B′

The sets A′ and B ′ are called the frontiers of the split.

Split Decomposition (SD) is a generalization of MD (A = A′) and is
also commonly used in a Divide and Conquer way, following the
SD-tree.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 31 / 39

Algorithm 2: Split Decomposition

Split Decomposition (E. Gioan, P.T.C.):

DEFINITION: A split of a connected graph G = (V , E) is a
bipartition (A, B) of V , where |A|, |B | > 1, such that

1 every vertex in A′ = N(B) is universal to B ′ = N(A);
2 no other edges exist between vertices in A and B.

A B

A′ B′

The sets A′ and B ′ are called the frontiers of the split.

Split Decomposition (SD) is a generalization of MD (A = A′) and is
also commonly used in a Divide and Conquer way, following the
SD-tree.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 31 / 39

Algorithm 2: Split Decomposition

Split Decomposition (E. Gioan, P.T.C.):

DEFINITION: A split of a connected graph G = (V , E) is a
bipartition (A, B) of V , where |A|, |B | > 1, such that

1 every vertex in A′ = N(B) is universal to B ′ = N(A);
2 no other edges exist between vertices in A and B.

A B

A′ B′

The sets A′ and B ′ are called the frontiers of the split.

Split Decomposition (SD) is a generalization of MD (A = A′) and is
also commonly used in a Divide and Conquer way, following the
SD-tree.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 31 / 39

Split Decomposition Contd.

There is a linear time SD algorithm by Dahlhaus that is very hard to
understand. A group in Paris has recently simplified this algorithm,
but it is still difficult. Neither of these algorithms seems to generalize
to circle graph recognition (our final example).

Our algorithm uses a LBFS preprocessing step and then incrementally
updates the current SD-tree, according to this LBFS ordering.

The algorithm uses graph-labelled trees to represent the SD-tree, as
proposed by E.G. and C.P. for distance hereditary graphs.

The new algorithm is straightforward, but is an inverse of
Ackermann’s function (α) off linear time (because of the use of
Union-Find). Note that α ≤ 4 for all practical input.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 32 / 39

Split Decomposition Contd.

There is a linear time SD algorithm by Dahlhaus that is very hard to
understand. A group in Paris has recently simplified this algorithm,
but it is still difficult. Neither of these algorithms seems to generalize
to circle graph recognition (our final example).

Our algorithm uses a LBFS preprocessing step and then incrementally
updates the current SD-tree, according to this LBFS ordering.

The algorithm uses graph-labelled trees to represent the SD-tree, as
proposed by E.G. and C.P. for distance hereditary graphs.

The new algorithm is straightforward, but is an inverse of
Ackermann’s function (α) off linear time (because of the use of
Union-Find). Note that α ≤ 4 for all practical input.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 32 / 39

Split Decomposition Contd.

There is a linear time SD algorithm by Dahlhaus that is very hard to
understand. A group in Paris has recently simplified this algorithm,
but it is still difficult. Neither of these algorithms seems to generalize
to circle graph recognition (our final example).

Our algorithm uses a LBFS preprocessing step and then incrementally
updates the current SD-tree, according to this LBFS ordering.

The algorithm uses graph-labelled trees to represent the SD-tree, as
proposed by E.G. and C.P. for distance hereditary graphs.

The new algorithm is straightforward, but is an inverse of
Ackermann’s function (α) off linear time (because of the use of
Union-Find). Note that α ≤ 4 for all practical input.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 32 / 39

Split Decomposition Contd.

There is a linear time SD algorithm by Dahlhaus that is very hard to
understand. A group in Paris has recently simplified this algorithm,
but it is still difficult. Neither of these algorithms seems to generalize
to circle graph recognition (our final example).

Our algorithm uses a LBFS preprocessing step and then incrementally
updates the current SD-tree, according to this LBFS ordering.

The algorithm uses graph-labelled trees to represent the SD-tree, as
proposed by E.G. and C.P. for distance hereditary graphs.

The new algorithm is straightforward, but is an inverse of
Ackermann’s function (α) off linear time (because of the use of
Union-Find). Note that α ≤ 4 for all practical input.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 32 / 39

Split Decomposition Contd.

A graph not containing a split is called prime.

DEFINITION: A graph-labelled tree (GLT) is a pair (T ,F), where T is a
tree and F a set of graphs, such that each (nonleaf) node u of T is
labelled by the graph G (u) ∈ F , and there exists a bijection ρu between
the edges of T incident to u and the vertices of G (u). The vertices of
such a G (u) are called marker vertices. The leaves of T are the nodes of
given graph G (V , E).

2

1

3 4

5

6
7

14 15

11

9

8

10

13

12

1

2

3
4

5

6
7

8

9

10

11

12

13

14 15

Figure: A graph-labelled tree (T ,F) and its accessibility graph G(T ,F).

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 33 / 39

Split Decomposition Contd.

2

1

3 4

5

6
7

14 15

11

9

8

10

13

12

1

2

3
4

5

6
7

8

9

10

11

12

13

14 15

Note how the splits of G correspond to the node to node edges of the split
tree as well as the splits of graph labels, when the graph label is not prime.

Cliques and stars are the only nonprime graph labels.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 34 / 39

Split Decomposition Contd.

Algorithm Outline:

1 ST (G0)← ∅
2 Let σ = x1, x2, · · · , xn be an arbitrary LBFS of G

3 for i = 1 to n do

4 ST (Gi)← ST (Gi−1) + xi

5 return ST (Gn)

Note: The advantage of using the LBFS preprocessing step is that it
allows a faster implementation than O(n3).

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 35 / 39

Algorithm 3: Circle Graph Recognition

Circle Graph Recognition (G.P.T.C.): This is the first subquadratic
algorithm for circle graph recognition and follows the same outline as
the SD algorithm, with the same timing, i.e., inverse Ackermann’s
function off linear.

DEFINITION: A circle graph is the intersection graph of chords of a
circle.

1

6
2

3

1

243
5

4

6

5

1
2

3

45

6

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 36 / 39

Circle Graph Recognition Contd.

Here the use of LBFS is based on a structural property of LBFS in
circle graphs.

THEOREM: Let G be a prime (with respect to SD) circle graph. If
x ∈ V (G) is the last vertex of an LBFS of G , then G has a chord
diagram in which N(x) is consecutive.

No other known SD algorithm “lifts” to circle graph recognition in
this way.

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 37 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]

chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]

path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Open Questions and Topics for Tomorrow

1 Can LBFS be used for fast(er) recognition of:

strongly chordal graphs [chordal and every cycle of even length at least
6 has an odd chord - i.e., the distance on the cycle between the
endpoints is odd]
chordal bipartite graphs [bipartite with no induced cycles of size greater
than 4]
path graphs [the intersection graphs of subpaths of a tree]

2 other applications of LBFS?

3 Why is LBFS the only search that has a vertex ordering
characterization?

4 Are there good heuristic algorithms that could be built off graph
searches?

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 38 / 39

Thank you for your attention

DGC (DCS, University of Toronto) Graph Searching Prague, 30/09/13 39 / 39

