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Overview of Graph Searching

Algorithms for visiting all vertices of a given graph.

BFS and DFS discovered in the late 1890s for maze traversal.

Desire for simple, efficient, easily implementable algorithms.

In the 1960s and 1970s BFS and DFS were shown to have many
applications in computer science.

In 1976 Rose, Tarjan and Lueker presented LBFS as a way of
recognizing chordal graphs (no induced cycle of size greater than 3).

Many applications of LBFS were later found including easier linear
time algorithms for modular and split decomposition.

There is a vertex ordering characterization of LBFS orderings
[Golumbic; Brandstadt, Dragan and Nicolai].

The study of such VOCs lead to the discovery of LDFS [C. and
Krueger].
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Maximal (Maximum?) Independent Set Algorithm

Maximal (Maximum?) Independent Set (MIS):
Input: A connected graph G = (V , E ) and vertex ordering σ
Output: Set I containing the vertices of an IS

I ← ∅; V ′ ← V {V ′ stores the unprocessed vertices}; j ← 0;

while V ′ 6= ∅ do
j ← j + 1;
xj ← the rightmost vertex of V ′, as ordered by σ;
I ← I ∪ {xj}; V ′ ← V ′ \N [xj ];

end

return (I )
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Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Questions about the algorithm

How is σ determined?

To be discussed later.

In general can I be “close to” a maximum independent set?

NO. Consider K2,n and a degree n vertex being the rightmost
vertex of σ. I = the two degree n vertices; whereas the maximum IS
consists of the n degree 2 vertices.

How could we “Certify” that I is a maximum IS?

Find a clique cover of the same cardinality. Note that for any
graph G, α(G ) ≤ κ(G ) where α is the maximum cardinality IS and κ
is the minimum cardinality clique cover. If the graph is perfect, then
equality holds.

DGC (DCS, UofT) Graph Searching Prague, 03/10/13 5 / 17



Example
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2

1
3
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6
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σ = I = 0 9 6 4 1

σ = 0 7 9 8 6 5 3 4 2 1

Note that I is of maximum cardinality, as shown by the clique cover
(from right to left): {2, 1}, {5, 3, 4}, {8, 6}, {7, 9}, {0}
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Cocomparability Graphs, Comparability Graphs and Posets

A cocomparability graph G (V , E ) is one where the complement
graph (known as a comparability graph) has a transitive orientation
of its edges.

In particular, there is an orientation of E such that if there is an arc
from x to y and an arc from y to z , then there is an arc from x to z .

A comparability graph together with an acyclic transitive orientation
of its edges can be equivalently represented by a linear extension of
partially ordered set (also called a poset).

A poset consists of a set V together with an irreflexive, antisymmetric
and transitive binary relation < that imposes a “precedes”
relationship on certain pairs of elements of V . Two elements
x , y ∈ V are said to be comparable if x < y , or y < x ; otherwise the
elements are called incomparable. A linear extension of a poset is a
total ordering of V that respects the ordering of all comparable pairs.
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Definitions Continued

DEFINITION: G (V , E ) is a interval graph if it is the intersection
graph of subpaths of a path; namely, each vertex represents a subpath
and two vertices are adjacent iff their subpaths intersect. Note that
interval graphs are a strict subset of cocomparability graphs.

THEOREM: G is interval iff there is an ordering of V such that for all
x < y < z , xz ∈ E implies xy ∈ E (I ORDER)

THEOREM: G is cocomparability iff there is an ordering of V such
that for all x < y < z , xz ∈ E implies xy ∈ E OR yz ∈ E OR both
(COCOMP order)

x y z
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Note that every I ORDER serves as an appropriate σ for the MIS
algorithm; but many COCOMP orders fail.

Note that from the poset perspective, this algorithm is computing a
maximum sized set of mutually comparable elements.
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Lexicographic Depth First Search (LDFS)

Roughly speaking, LDFS is a DFS where ties are broken by favouring
vertices with adjacencies to most recently visited vertices.

COMPLETE the LDFS

1

2a

b

c

τ = 1 2 ?
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Lexicographic Depth First Search (LDFS)

COMPLETE the LDFS

1

2a

b

c

τ = 1 2 b c a

IMPLEMENTATION: O(min{n2, n + mloglogn}) Spinrad and ???
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LBFS cocomp orders may fail for the MIS algorithm; for example an
LBFS starting at a degree n vertex in K2,n.

BUT LDFS cocomp orders succeed for the algorithm (including
finding an optimum clique cover) - a surprisingly easy proof.

How to generate an LDFS cocomp order? McConnell and Spinrad
have a complicated linear time algorithm to generate τ, a cocomp
order of a cocomp graph - but the current fastest algorithm to
confirm that it is a cocomp order requires O(MM) time.

Setting σ = LDFS+(G , τ) yields an LDFS order that is a cocomp
order if τ is a cocomp order.

A + sweep breaks ties by choosing the rightmost tied vertex as
ordered by τ.
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Example of LDFS+

2

1
3

4 5
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9

0

Consider this graph and cocomp order τ = 1 2 3 4 5 6 7 8 9 0

σ = 0 7 9 8 6 5 3 4 2 1 - This ordering is the one used in the example
of the MIS algorithm.

The first vertex of σ is the rightmost vertex of τ, namely 0. The next
vertex is 7.

Now there is a tie amongst 8, 9, 5. Since 9 is rightmost it is chosen
next, followed by 8 (rightmost between 5 and 8).

The next vertex is 6 - now LDFS forces 5 and then 3, followed by
4, 2, 1.
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Comments

By having a certification step, we will either guarantee that we have a
maximum IS or will output a message that the given ordering is not a
cocomp ordering. Note that we do not confirm that our given
ordering τ is a cocomp ordering.

THEOREM (C. + K.):
An ordering σ is an LDFS ordering iff for all a <σ b <σ c where
ac ∈ E , ab /∈ E , there exists a <σ d <σ b such that db ∈ E , dc /∈ E .

Similar LDFS+ modified interval graph algorithms work for:

Minimum Path Cover (equivalent to the bump number problem on
posets) [C., Dalton, H.]
Longest Path [Mertzios, C.]

These algorithms give us insight into the “LDFS structure of posets”.
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New Results

We have a characterization of the searches S such that σ = S+(τ) is
a cocomp order whenever τ is a cocomp order.

Using a new graph search we have an easier permutation recognition
algorithm.

We also have structural results on a lattice built on the set of
maximal cliques in a cocomp graph - note that the number of such
cliques can grow exponentially with n.

Using these results we have a new graph search and simple algorithms
to compute minimal clique separators and to find simplicial vertices in
cocomp graphs.

Very recently Lalla Mouatadid and E.K. have found a linear time
algorithm to find the maximum weighted independent set in a
cocomp graph. They have also shown how to find an LDFS cocomp
order in linear time, given an arbitrary cocomp order.
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Concluding Remarks

Are there more new searches and new simple algorithms for cocomp
graphs?

J.D., E.K and I are guardedly optimistic that we can extend Keil’s HC
algorithm for interval graphs to get a linear HC algorithm for cocomp
graphs. This algorithm is also certifying insofar as if there is no HC
the algorithm outputs a toughness certificate.

New insights into the structure of posets? What about other areas of
mathematics?

Can these results extend to AT-free graphs?

Can we use graph searching for heuristic algorithms? Already used for
the diameter of the giant component of the Facebook Graph.
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Thank you for your attention
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