
CSC 2420 Spring 2015, Assignment 2
Due: March 5 at start of class

NOTE: If you are taking the course for credit, then you may either work
by yourself or with at most one other student taking the course for credit
(but not the student with whom you collaborated in P1 if you collaborated
in P1). You must specify with whom you are collaborating and the extent of
collaboration. It is certainly preferable for you to solve the questions without
consulting a published source. However, if you are using a published source
then you must specify the source and you should try to improve upon the
presentation of the result.

1. The following questions relate to computing least cost paths in a di-
rected edge weighted graph.

• Show that Dijkstra can give a wrong answer when applied to a
graph with negative edges but no negative weight directed cycles.

• Show how to adapt the Bellman-Ford DP algorithm for the single
source least cost path problem so as to detect the presense of a
negative cycle.

• Can you do the same for the DP that was presented for the all
pairs least cost paths problem?

2. Consider the secretary problem where now instead of the inputs coming
from an adversary (and then presented in random order), the n inputs
now come i.i.d. from a known finite distribution D. That is, we know
the probability of drawing any given u in the support of D. Let |D|
denote |support(D)|.

• Show how to use dynamic programming to compute the following
table P [k, u, v]: if v is the kth input and u is the maximum value
amongst the first k − 1 inputs, then P [k, u, v] is the probability
that a larger element will occur in the remaining (n− k) inputs.

• What is the complexity (as a function of n and |D|) for computing
the entire table?

1

• How would you possibly use this table (and any other information
you can compute within time polynomial in n and |D|) to define
an algorithm that would determine whether or not to select the
kth input when it is revealed?

3. This question concerns local search for the exact Max-2-Sat problem
where the input is a CNF formula with exactly 2 literals per clause.
The goal is to maximize the number (or the total weight) of clauses
that can be satisfied by some truth assignment. Khanna et al consider
the locality gap achieved by oblivious and non-oblivious local search.
(See L4 lecture notes and, in particular, the proof of the 2

3
locality

gap for the 1-flip neighbourhood oblivious search.) As suggested by
Khanna et al, one can also obtain a locality gap of 3

4
by an oblivious

local search algorithm that defines the neighbourhood of a solution
(i.e. truth assignment) to include flipping any single variable and also
flipping all variables. Modify the 2

3
locality gap result to obtain the

improved locality gap for this larger neighbourhood.

4. Consider the makespan problem for the restricted machines model.
That is, each job Ji is represented by a pair (pi, Ai) where pi is the
processing time (or load) for the job and Ai ⊂ {1, . . . ,m} is the subset
of machines on which job Ji can be scheduled.

• (a) Assuming all jobs have processing time pi = 3, show how
to modify the reduction of bi-partite matching to the max flow
problem so as to compute an optimal makespan solution for these
input instances.
Aside: Note that the natural greedy online algorithm only gives
a logm approximation for these instances where m is the number
of machines.

• (b) Now assume that all jobs have processing time pi ∈ {1, 3}.
Does your approach for case (a) above extend to this case? If so,
how and if not, why?

5. Consider the following call routing makespan problem. There is an n
node bi-directional ring network G = (V,E) upon which calls {C1, C2, . . . , Ct}
must be routed. That is, V = {0, 1, . . . , n − 1} and E = {(i, i +
1 mod n)}∪{(i, i−1 mod n)} and calls Cj are pairs (sj, fj) originating

2

at node sj and terminating at node fj. Each call Cj can be routed in a
clockwise or counter-clockwise direction and and incurs a routing cost
pj on each directed edge it uses. The load Le on any directed edge e is
the sum of the routing costs for all calls using that edge. The goal is
to minimize maxe Le.

• Formulate this problem as an IP. Indicate the intended meaning
of each variable in the IP.

• Using an LP relaxation of this problem, show how to derive a con-
stant approximation algorithm. What is the constant you obtain?

6. Consider the maximum matching problem. That is, given a graph
G = (V,E), find a subset of edges E ′ ⊆ E such that for all nodes
u ∈ V , the degree of u in G′ = (V,E ′) is at most 1. Let IN(u) =
{e : e = (u, v) ∈ E for some v ∈ V }. We can express the maximum
matching problem as the following natural IP:
maximize

∑
e∈E xe

subject to :
∑

e:e∈IN(u) xe ≤ 1 for all u ∈ V

xe ∈ {0, 1}

• Consider the LP relaxation P (in standard form) of this IP; that
is, : maximize

∑
e∈E xe

subject to :
∑

e:e∈IN(u) xe ≤ 1 for all u ∈ V
xe ≤ 1
xe ≥ 0

State the dual D of the primal P using dual variables yu for u ∈ V .
Can you explain this dual as the relaxation of a known optimiza-
tion problem?

• Suppose now that we restrict attention to bipartite graphs. Ex-
plain (from anything you already know without any IP/LP theory)
why the value of the LP OPT equals the value of the IP OPT.

7. Consider the unweighted vertex cover problem.

3

(a) Suppose you have a polynomial time algorithm A to compute the
size of an optimal vertex cover for some class G of graphs closed
under removal of edges and nodes (e.g. bipartite graphs). Show
how to use A to compute an optimal solution (i.e. a subset of the
vertices) for the vertex cover problem restricted to graphs in G.

(b) Use ideas from any of the above questions to argue why comput-
ing an optimal vertex cover in bipartite graphs can be done in
polynomial time.

8. Perhaps one more question to follow.

4

