
CSC 2420 Spring 2015, Assignment 1
Due: January 29 at start of class

NOTE: If you are taking the course for credit, then you may either work
by yourself or with at most one other student taking the course for credit.
You must specify with whom you are collaborating and the extent of col-
laboration. It is certainly preferable for you to solve the questions without
consulting a published source. However, if you are using a published source
then you must specify the source and you should try to improve upon the
presentation of the result.
NOTE: Do not worry if you cannot solve every question. Do the best you
can, If you have some useful partial ideas then mention them. But if you
do not have any ideas on a given question, I prefer that you just leave the
question blank. I award 20% of the value of the question for the admission
“I do not know how to answer this question”. That is, I credit people for
knowing what they do not know.

1. Consider the knapsack problem with input items {(v1, s1), . . . , (vn, sn)}
and capacity C. WLG the sizes sj of all items are at most C. Let
Greedyval(I) (resp. Greedyval−d(I)) be the greedy algorithm that first
sorts the items Ij = (vj, sj) so that v1 ≥ v2 . . . ≥ vn (resp. v1

s1
≥ v2

s2
. . . ≥

vn
sn

) and then accepts items greedily (i.e. as long as they fit).

• Show that neither Greedyval nor Greedyval−d have constant ap-
proximation ratios.

• Show that no priority algorithm can have a constant approxima-
tion.

• Consider the special case of vi = si for all i which we will call the
simple knapsack problem. Specify and analyze a greedy algorithm
that provides a constant approximation for the simple knapsack
problem.

• Consider the following maximum of two algorithms: Let i∗ =
argmaxi{vi|i = 1 . . . n} and let A = {Ii∗} and B = Greedyval−d(I)
Return the better of the two solutions. Show that this algorithm
is a 2-approximation for the knapsack problem. (Do not simply
quote or apply Sahni’s result but rather prove the 2-approximation.)

1

Clarification: Whenever a tie has to be broken (e.g. in choosing
the index i∗ of the most valued item), you can assume any tie
breaking rule so that the algorithm is well defined. For example,
in choosing the index i∗ of the most valued item, argmaxi returns
a single index and not a set of indices.

2. The following questions refer to the s-set packing problem and the (ar-
bitrary cardinality) set packing problem where the underlying universe
has size m = |U |.

• Consider the “greedy-by-weight-per-size” algorithm. Use a charg-
ing argument to show that this algorithm provides an s approxi-
mation for the weighted s-set packing problem.

• Again, consider the “greedy-by-weight-per-size” algorithm. Use a
charging argument to show that the algorithm provides a

√
m ap-

proximation for the unweighted set packing problem. Recall that
in the unweighted case, it is equivalent to say that the algorithm
sorts the input sets so that |S1| ≤ |S2| . . . ≤ |SN |. Hint: Consider
the ith set (call it Xi) accepted by the greedy algorithm and sup-
pose this set has size x. Show that the number of OPT sets that
can be charged to Xi is at most min{x,m/x}.
• Consider the partial enumeration greedy algorithm PGreedyk for

set packing as defined in the class and lecture notes. Show that
this algorithm provides a 2

√
m/k approximation for the weighted

set packing problem.
Note: If you would like something a little simpler, you can show
that PGreedyk with k = 1 is a 2

√
m approximation.

Clarification: In the algorithm PGreedyk, Maxk is the best so-
lution possible when restricting solutions to those containing at
most k sets. Again, as in question 1, you can assume any tie
breaking rule so that the algorithm is well defined.

3. Consider the classical secretary problem (i.e. ROM model) with N
inputs.

• Show how to choose an item so that the expected value of the item
is at least a 1

4
of the best item. Give the analysis showing this 1

4

2

approximation. (This is, of course, not as good as the known
optimal 1

e
result; but the analysis is more immediate.)

• Suppose now we are in the online model (i.e. adversarial order).
Show that no deterministic online algorithm can acheive a con-
stant approximation with respect to the maximum value obtain-
able. (The same holds true for randomized online algorithms but
for now just consider deterministic algorithms.)

4. This problem concerns the WISP problem on one and two machines.
Let the intervals {I1, . . . , In} be sorted so that f1 ≤ f2 . . . ≤ fn.

• Consider the following semantic array as an alternative for solving
the one machine problem:
V [k] = the maximum value of a feasible solution restricted to
{I1, . . . , Ik} such Ik is scheduled and 0 if Ik is not scheduled. Pro-
vide a corresponding computational array and indicate how the
desired optimum value is derived from this array.

• Show that for two machines it is not optimal to first optimally
schedule on the first machine and then optimally schedule the
remaining jobs on the second machine.

• Give an optimal DP for WISP on two machines.
Hint: Use the idea in the alternative one machine DP given above.

3

