
CSC2420 Spring 2015: Lecture 9

Allan Borodin

March 12, 2015

1 / 29

Announcements and todays agenda

Announcements

The first 4 questions of the final assignment are now posted.

Todays agenda

1 Review discusion of naive randomized algorithm for Max Sat and its
derandomization (i.e. Johnson’s algorithm).

2 Getting past 2
3 for Max Sat by greedy-like algorithms.

3 The Buchbinder double sided algorithm for the Unconstrained
Non-Monotone Submodular Maximzation and application to Max Sat.

4 Randomized rounding of LP and SDP for Max-2-Sat.
5 2-SAT and Random walks

2 / 29

The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.

3 / 29

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring againt an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

4 / 29

Derandomizing the naive algorithm
We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)

This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.

It is easy to determine how to set xj since we can calculate the
expectation clause by clause.

We can continue to do this for each variable and thus obtain
adeterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.

NOTE: The derandomization can be done so as to achieve an online
algorithm (i.e. within the priority model with adversarial order).

5 / 29

(Exact) Max-k-Sat

For exact Max-2-Sat (resp. Max-3-Sat), the approximation (and
totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved (as we will see) by the

use of semi-definite programming (SDP).

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?

6 / 29

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

7 / 29

Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .797 (resp. .931) using semi-definite
programming and randomized rounding.

8 / 29

Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). We can study online and ROM problems within
the priority algorithm framework.

To precisely model the Max-Sat problem within the priority
framework, we need to specify the input model.

In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively. This is sufficient for the naive algorithm and its
derandomization (Johnson’s algorithm).

2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

3 The variable x is reprsented by a complete specification of each clause
it which it appears.

9 / 29

Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnsons algorithm in the online model is at
most 2

√
157 ≈ .746 < 3/4 , where the 3/4 ratio is obtained by

Yannakakis’ IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm”; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P)

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.

10 / 29

A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.
In terms of priority algorithms this is a randomized online algorithm
(i.e. adversary chooses the ordering) where the variables are
represented in the second (middle power) input model.
This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation better
than 2/3 when the input model is the weakest of the input models.
Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within the second
(middle) input model. This provides a strong sense in which to claim
the Poloczek and Schnitger Slack algorithm “cannot be
derandomized”.
The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm.

11 / 29

Submodular maximization problems; A small
diversion before returning to MaxSat

A set function f : 2U → < is submodular if
f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T) for all S ,T ⊆ U.

Equivalently, f is submodular if it satisfies decreasing marginal gains;
that is,
f (S ∪{x})− f (S) ≥ f (T ∪{x})− f (T) for all S ⊆ T ⊆ U and x ∈ U

We will always assume that f is normalized in that f (∅) = 0.

Submodular functions arise naturally in many applications and has
been a topic of much recent activity.

Probably the most frequent application of (and papers about)
submodular functions is when the function is also monotone
(non-decreasing) in that f (S) ≤ f (T) for S ⊆ T .

Note that linear functions (also called modular) functions are a
special case of monotone submodular functions.

12 / 29

Submodular maximization continued
In the submodular maximization problem, we want to compute S so as to
maximize f (S).

For monotone functions, we are maximizing f (S) subject to some
constraint (otherwise just choose S = U).

For the non monotone case, the problem is already interesting in the
unconstrained case. Perhaps the most prominent example of such a
problem is Max-Cut (and Max-Di-Cut).

Max-Cut is an NP-hard problem. Using an SDP approach just as we
will see for the Max-2-Sat problem yields the approximation ratio
α = 2

π min{0≤θ≤π}
θ

(1−cos(θ) ≈ .87856. Assuming UGC, this is optimal.

For a submodular function, we may be given an explicit representation
(when a succinct representation is possible as in Max-Cut) or we
access the function by an oracle such as the value oracle which given
S , outputs the value f (S) and such an oracle call is considered to
have O(1) cost. Other oracles are possible (e.g. given S , output the
element x of U that maximizes f (S ∪ {x})− f (S)).

13 / 29

Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation was augmented by Dobzinski and
Vondrak showing the same bound for an explicitly given instance
under the assumption that RP 6= NP.

14 / 29

The Buchbinder et al (1/3) and (1/2)
approximations for USM
In the FOCS [2012] conference, Buchbinder et al gave an elegant linear
time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi

then Xi := Xi−1 ∪ {ui};Yi := Yi−1

else Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For

15 / 29

The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.

That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.

Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.

16 / 29

Applying the algorithmic idea to Max-Sat
Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘

17 / 29

Buchbinder et al Submodular Max-Sat
Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P) + f2(C ∩ (C \ P)).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P) and f2(C ∩ (C \ P)).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N) ≥ f1(N) + f2(N) ≥ g(OPT), the claimed
(3/4)-approximation is obtained.

REFERENCES

[1] A. A. Ageev and M. I. Sviridenko. An 0.828 approximation
algorithm for the uncapacitated facility location problem. Dis-
crete Appl. Math., 93:149–156, July 1999.

[2] Shabbir Ahmed and Alper Atamtürk. Maximizing a class
of submodular utility functions. Mathematical Programming,
128:149–169, 2011.

[3] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan
Vondrák. Maximizing a monotone submodular function subject
to a matroid constraint. To appear in SIAM Journal on
Computing.

[4] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Depen-
dent randomized rounding via exchange properties of combi-
natorial structures. In FOCS, pages 575–584, 2010.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submod-
ular function maximization via the multilinear relaxation and
contention resolution schemes. In STOC, pages 783–792, 2011.

[6] V. P. Cherenin. Solving some combinaotiral problems of op-
timal planning by the method of successive calculations. Pro-
ceedings of the Conference on Experiences and Perspectives
on the Applications of Mathematical Methods and Electronic
Computers in Planning, Mimeograph, Novosibirsk, 1962 (in
Russian).

[7] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of
bank accounts to optimize float: an analytic study of exact and
approximate algorithms. Management Sciences, 23:789–810,
1977.

3For every algorithm, assuming a representation of sets allowing addition
and removal of only a single element at a time, one can maintain the
complement sets of all sets maintained by the algorithm without changing
the running time. Hence, we need not worry about the calculation of N −
N1.

655

18 / 29

Concluding discussion of Submodular Max-Sat

The algorithm is shown to have a 3
4 approximation ratio for Monotone

Submodular Max-Sat.

In the paper, they claim that for the standard Max-Sat (i.e. when the
function f is a linear function), that the algorithm can be made to
run in linear time.

Poloczek et al show that the algorithm turns out to be equivalent to a
previous Max-Sat algorithm by van Zuylen.

In fact, as observed by Poloczek, the algorithm can be de-randomized
to a two pass determinstic algorithm (running in linear time).

1 The first pass sets a probability for each variable rather than making an
irrevocable assignment.

2 The second pass then uses the same order of the variables derandomize
the algorithm using the method of conditional probabilities.

We can view this as a “2-pass online algorithm” in the priority
framework using the middle strength input model.

19 / 29

Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.

20 / 29

Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k)k . Then

Prob[Cj is satisifed] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.

21 / 29

The quadratic program for Max-2-Sat

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C) of each clause C
in terms of these {−1, 1} variables.

1 val(xi) = (1 + yiy0)/2
val(x̄i) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C) = 1− val(x̄i ∧ x̄j) = 1− (1−yiy0

2)(
1−yjy0

2) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C) = (3− yiy0 − yjy0 − yiyj)/4

22 / 29

The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi)

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.

23 / 29

The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value

2
∑

aijProb[yi = yj] +
∑

bijProb[yi 6= yj] ; Prob[yi 6= yj] =
θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).

24 / 29

The random walk algorithm for 2-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .

There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi) = 1− τ(xi).

25 / 29

The expected time to reach a satisfying assignment
When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.
26 / 29

The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

27 / 29

Stationary distributions
Define qt = (qt1, q

t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi .
28 / 29

Back to random walks on graphs
Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula. Can use
Markov inequality to obtain probability of not finding satisfying
assignment. 29 / 29

