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Announcements and todays agenda

Assignment 2 due next week. I will try to answer questions today.

I will gradually be constructing questions for assignment 3 which will
now be the last assignment for the course.

Slides relating to Derek Corneil’s lectures (which I am calling lecture
7) are posted on the web page.

Todays agenda
1 Quick review of duality
2 Dual fitting analysis of greedy algorithms
3 The secretary problem as an LP using duality to argue 1

e optimality.
4 Factor revealing LPs
5 Start randomized algorithms.
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Quick review of duality

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:

I Minimize c · x
I subject to A · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:

I Maximize b · y
I subject to Atr · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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An example: set cover
As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj ≥ 1 for all i

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.
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Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some caes, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will usually assume the primal is a minimization
problem to simplify the exposition.
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Strong and Weak Duality
Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound.
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Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm
We have already mentioned the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .
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The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).
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Dual fitting analysis continued

The goal of the dual fitting analysis for set cover is to show that {ye}
with ye = price(e)/Hd} is a feasible dual and hence any primal
solution must have cost at least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei ) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei )/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.
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Dual fitting applied to a maximization problem

Krysta [2005] applies dual fitting approach to a maximization problem,
namely to analyze (in my terminology) fixed order prioriity algorithms
(such as the Lehman et al [1999] greedy 2

√
m approximate set packing

algorithm) for generalizations of the weighted set packing problem (which
can be used to formulate many natural integer packing problems).

Generalized Set Packing

As in weighted set packing, we have a collection of sets S ∈ S over some
universe U. Each set has a weight wS . Now we allow sets to be multi-sets
and let q(u,S) to be the number of copies of u ∈ S . Furthermore, we also
allow each element u ∈ U to have some maximum number bu of copies
that can occur in a feasible solution (in contrast to the basic set packing
problem where bu = 1 for all u ∈ U).
The goal is to select a subcollection C of sets satisfying the feasibility
constraints on the {bu} so as to maximize the sum of the weights of the
sets in C.
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The natural IP and LP relaxation

The natural IP/LP

max
∑

S∈S wSxS

subject to
∑

S :u∈S q(u,S)xS ≤ bu ∀u ∈ U

xS ∈ {0, 1}
In the LP relaxation, the {0,1} constraint becomes 0 ≤ xS ≤ 1}
NOTE: Unlike set cover, for set packing the condition xS ≤ 1 is necessary

The minimization dual

min
∑

u∈U buyu +
∑

S∈S zS

subject to zS +
∑

u∈S q(u, S)yu ≥ wS ∀S ∈ S
zS , yu ≥ 0

NOTE: The dual variable zS corresponds to the constraint xS ≤ 1
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The secretary problem as an LP

We recall the classical secrtary problem (defined in Lecture 2) which is to
maximize the probability of choosing the best candidate from N candidates
that arrive in random order. Bucnbinder, Kain and Singh [2010] show how
to view the classical secretary problem (and many generalization) as an LP
maximization problem with the following benefits:

1 Finding an optimal mechanism reduces to solving a specific linear
program

2 Proving that 1
e is the best bound possible reduces to finding a

solution to the dual of the LP.

3 This approach facilitates the analysis of many generalizations of the
secretary problem (i.e. by adding additional constraints or modifying
the objective function).

4 One of the generalizations is to obtain a trulthful mechanism whereby
agents (i.e. candidates) have no incentive to seek a particular place in
the ordering (and hence making a random order more meaningful).
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The LP for the classical secretary problem

The primal LP P

max 1
n

∑N
i=1 i · pi

subject to: i · pi ≤ 1−
∑i−1

j=1 pj 1 ≤ i ≤ N

pi ≥ 0

The dual LP D
min

∑N
i xi

subject to:
∑N

j=i+1 xj + i · xi ≥ i
N 1 ≤ i ≤ N

xi ≥ 0
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Sketch of LP characterization

To prove that this LP captures the secrtary problem one needs to prove:

If M is any mechanism and pMi is the probability that M selects the
candidate in position i . Then {pMi } is a feasible solution for the primal
P and Prob[M selects best candidate] ≤ the objective value of P
Let {pi} be any feasible solution of P. Then the following mechanism
M obtains the objective function of P:
Select candidate i with probability i ·pi

(1−
∑

j<i pj )
if the first i − 1

candidates have not been selected and i is best so far.

Furthermore, to prove an upper bound (namely 1
e + o(1)) on the best

performance (i.e. best probability), it suffices to construct a feasible
solution {xi} for the dual D with dual objecaivet 1

e .

Setting xi = 0 for 1 ≤ i ≤ N/e and xi = 1
N (1−

∑N
j=i

1
j ) for

n/e < i ≤ N is a feasible dual solution with value 1
e .
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Factor revealing LPs

In the dual fitting method (that we illustrated with the natural greedy
algorithm for set cover problem), the dual solution is not a feasible
dual. But the dual solution appropriately scaled down is a a feasible
dual. For the set cover problem, if d is the maximum size of any set,
then Hd is a sufficient scaling factor. (This is dual complementary
slackness.)

Is there a principled way to think about deriving appropriate scaling
factors so that dual solutions become feasible? This will be the goal
of factor revealing LPs.

The greedy algorithm can be recast as a primal dual algorithm where
the price(ei ) becomes the dual variable yi associated with element ei .
These dual {yi} variables are raised simultaneously and whenever a
dual constraint becomes tight for a set Sj , all the dual variables in Sj
are frozen (i.e. no longer raised) and withdraw their contribution from
all other sets in which they occur. Then Sj is added to the cover.
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Factor revealing LPs continued

This then has the nice interpretation of the dual variables paying for
the sets in the cover.

By renaming, let the order in which the dual variables are covererd be
e1, e2, . . . , em. By the uniform raising of the dual variables we then
have y1 ≤ y2 . . . ≤ ym.

Let us say that a k element set Sj is selected when i − 1 of its
elements have already been covered (and hence frozen). Then
(k − i + 1)yi ≥ wj .

The goal then is to see what is the least scaling factor that can be
used to insure dual feasibility.

For a fixed size problem (i.e. fixing n and m, the number of sets and
elements), we want to maximize over all sets and all instances of that
size to reveal a satisfactory scaling factor.
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Factor revealing LPs continued

For the set cover greedy algorithm recast as a primal dual algorithm, we
have the following factor revealing LP problem (for instances of a given
size):

Factor revealing LP for set cover greedy algorithm

Maximize
∑k

i=1 yi
wS

over {yi} and all sets S (noting that wS is now
considered a variable)
subject to

yi ≤ yi+1 1 ≤ i ≤ k − 1

(k − i + 1)yi ≤ wS 1 ≤ i ≤ k − 1

yi ≥ 0 1 ≤ i ≤ k

wS ≥ 1
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Factor revealing LP conclusion
For any fixed size, the factor revealing LP provides an appropriate
scaling factor.
One then needs to consider the supremum of these values as the
instancd size grows.
The hope is that by inspection of some small cases that one can see
determine an appropriate scaling factor for all instance sizes. That is,
the approach provides guidance for an eventual human derived proof.
Factor revealing LPs have been used in a number of algorithmic
analyses. It was first explicitly presented by Jain et al [2003] for
greedy algorithms for the facility location problem.
It has been extended by Mahdian and Yan to [2011] to the KVV
Ranking algorithm for bipartite matching in the ROM model. Their
extension to strongly factor revealing LPs is such that any member of
the family of factor revealing LPs can be used to establish an
appropriate scaling factor.
Another variant called tradeoff revealing LPs was used by Mehta et al
[2015] to analyze a greedy algorithm for the the adwords problem.
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Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (jn the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.
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The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be derandomized, there is often
conceptual insight to be gained from the initial randomized algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms is that the probability
of success can be amplified by repreated independent trials of the
algorithm.
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Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x ] for a large prime p.
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Polynomial identity testing
The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.
Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1, . . . .rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact
that a univariate polynomial of degree d can have at most d zeros.
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Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm the
determinant can be computed in O(n2.38) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.
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The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.
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Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring againt an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.
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Derandomizing the naive algorithm
We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F )|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F )|xi∈u{0,1}] as
E[w(F )|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F )|xi∈u{0,1}|xj = 0] · (1/2)

This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.

It is easy to determine how to set xj since we can calculate the
expectation clause by clause.

We can continue to do this for each variable and thus obtain
adeterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.

NOTE: The derandomization can be done iso as to achieve an online
algorithm.
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(Exact) Max-k-Sat

For exact Max-2-Sat (resp. Max-3-Sat), the approximation (and
totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved (as we will see) by the

use of semi-definite programming (SDP).

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?
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Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := LP
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L− N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For
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Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .797 (resp. .931) using semi-definite
programming and randomized rounding.
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