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Announcements and todays agenda

Announcements
The first three questions for the second problem set were posted.

I plan to add more questions before or on the weekend.
bf My plan did not materialize; I will be adding more questions at the
end of reading week and changing the due date to March 5.

Guest Lecture: On Thursday, Feb 26, the plan is to have Professor
Derek Corneil discuss “graph search and orderings that characterize
various graph classes”.

Todays agenda

1 Begin linear programming and rounding
2 LP Duality
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Integer Programming (IP) and Linear Programming
(LP)

We now introduce what is both theoretically and in practice one of
the most general frameworks for solving search and optimization
problems. Namely, we consider how many problems can be
formulated as integer programs (IP). (Later, we will also consider
other mathematical programming formulations.)
Solving an IP is in general an NP hard problem although there are
various IP problems that can be solved optimally. Moreover, in
practice, many large instances of IP do get solved.
Our initial emphasis will be on linear program (LP) relaxations of IPs.
LPs can be solved optimally in polynomial time as first shown by
Khachiyan’s ellipsoid method [1979] and then Karmarkar’s‘ [1984]
more practical interior point method. In some (many?) cases,
Danzig’s [1947] simplex method will outperform (in terms of time)
the worst case polynomial time methods.
Smoothed analysis gives an explanation for the success of simplex.
Open: a strongly polynomial time algorithm for solving LPs?
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Some IP and LP concepts

Integer Programs

An IP has the following form:

Maximize (minimize)
∑

j cjxj

subject to (
∑

j aijxj)Ribi for i = 1, . . . ,m
and where Ri can be =,≥,≤
xj is an integer (or in some prescribed set of integers) for all j

Here we often assume that all parameters {aij , cj , bi} are integers or
rationals but in general they can be real valued.

An LP has the same form except now the last condition is realized by
letting the xj be real valued. It can be shown that if an LP has only
rational parameters then we can assume that the {xj} will be rational.
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Canonical LP forms

Without loss of generality, LPs can be formulated as follows:

Standard Form for an LP

Maximize c · x Minimize c · x
subject to A · x ≤ b A · x ≥ b

x ≥ 0 x ≥ 0

Slack form

maximize/minimize c · x
subject to A · x + b = s

x ≥ 0; s ≥ 0

The {sj} variables are called slack variables.
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LP relaxation and rounding
One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational will suffice for our
interests) variables.
We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E ) with a weight
function w : V → <≥0. To simplify notation let the vertices be
{1, 2, . . . .n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj ≥ 1 for every edge (i , j) ∈ E
I xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex j is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.
Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.
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LP rounding for the natural vertex cover IP

The “natural LP relaxation” then is to replace xj ∈ {0, 1} by
xj ∈ [0, 1] or more simply xj ≥ 0 for all j .

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an IP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x∗ and create an integral solution x̄ as
follows: x̄j = 1 iff x∗j ≥ 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover). Why?
2

∑
j wj x̄j ≤ 2 ·

∑
j wjx

∗
j ≤ 2 · IP − OPT ; that is, the LP relaxation

results in a 2-approximation.

7 / 34



The integrality gap

Analogous to the locality gap (that we encountered in local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP−OPT
LP−OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .
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Integrality gaps and approximation ratios
When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative (i.e. lower) bound (say c ′) on the
integrality gap then this is only a result about the given IP/LP. In
practice we tend to see an integrality gap as strong evidence that this
particular formulation will not be able to result in a better than c ′

approximation. Indeed I know of no natural example where we have a
lower bound on an integrality gap and yet nevertheless the IP/LP
formulation leads “directly” into a better approximation ratio.
In theory some conditions need to be established to make this into a
provable statement. For the VC example, the rounding was
independent (for each variable) and “oblivious” (to the input graph).
In contrast to the Kn input, the LP-OPT and IP-OPT coincide for an
even length cycle. Hence this intergrality gap represents a tight
bound on the formulation using a graph oblivious rounding. 9 / 34



Makespan for the unrelated and restricted machine
models: a more sophisticated rounding

In the VC example I use the terms “(input) independent rounding” and
“oblivious” rounding.)

We now return to the makespan problem with respect to the unrelated
machines model and the special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.
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The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.
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Adapting the natural IP

As in the PTAS for the identical machine makespan PTAS, we use
binary search to find an appropriate approximation T for the optimal
makespan.

Given a candidate T , we remove all xji such that pj ,i > T and obtain
a “search problem” (i.e. constant or no objective function) for finding
xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, the LST i
algorithm then shows how to use a non-independent rounding to
obtain an integral solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an intergral solution.
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Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible LP with m + n constraints (not counting the non-negativity
constraints for the variables) then L has an optimal basic solution
such that at most n + m of the variables are non-zero.

It follows that there are at most m of the n jobs that have fractional
solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.

13 / 34



The rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a matching
of size y . Note, of course, this is what makes the “rounding”
non-independent .

The existence of this matching requires more LP whereby it can be
shown (LST credit Dantzig [1963]) that the connected components of
the bipartite graph are either trees or trees with one added edge (and
therefore causing a unique cycle).

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed a makespan at
most T before assigning the fractional jobs.
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The restricted machine makespan problem
The restricted machines model is a special case of the unrelated
machines problem where for every job j , pj ,i ∈ {pj ,∞}. Hence the
LST 2-approximation applies.
LST show that it is NP hard to do better than a 1.5 approximation
for the restricted machines (and hence unrelated machines) problem.
Shmoys shows that for the special case that pj ∈ {1, 2} that the
problem can be solved in polynomial time.
There is a relatively new (somewhat strange) result due to Svensson
[2011]. He shows how to approximate the value of the optimum
makespan to within a factor of 33/17 ≈ 1.9413 < 2. This is proven
constructively by a local search algorithm satisfying the
approximation. However, the local search is not shown to terminate in
polynomial time.
Note that if we could determine the optimal makespan value in
polynomial time, then we can also find an optimal solution in
polynomial time. However, the same cannot be said when we are only
approximating the makespan value.
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The special case of graph orientation

Consider the special case when there are (at most) two allowable
machines for each job. This is called the graph orientation problem.

It turns out easier to reason about the LP rounding applied to the
graph orientation problem for the given IP/LP but still the integrality
gap is 2.

A more refined IP/LP by Eveblendr, Krcal and Sgall [2008] achieves a
1.75 approximation for the graph orientation problem.

Even for the case when each job can only be scheduled on at most 3
machines, beating the 2-approximation remains an open problem.
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Some concluding remarks (for now) about LP
rounding

We will hopefully return to LP/LP rounding later. There are some
nice notes by Allan Jepson providing some of the geometric concepts
underlying LP solutions. (Note: these slides are password protected
but I will provide password in class.)

There can be, of course, many different IP/LP formulations for a
given problem. In particular, one often adds additional constraints so
that the polytope of the LP solutions is smaller.

For example, one could simply add constraints xi + xj + xk ≥ 2 for
every triangle in the graph and more generally, constraints for every
odd length cycle. (These inequalities do not essentially change the
integrality gap.)

Adding such constraints corresponds to one round of what is called
the LS lift and project method.

There are a number of lift and project methods. If you are interested,
then consult our local expert Toni Pitassi.
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Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:

I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:

I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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An example: set cover
As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj xj ≥ 1 for all i ; that is, ei ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.
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Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.
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Strong and Weak Duality
Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound.
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Motivating duality
Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −2y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual (with solution
(y1, y2) = (2, 1) must be 26.
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Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi )yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x
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Max flow-min Cut in terms of duality
While the max flow problem can be naturally formulated as a LP, the
natural formulation for min cut is as an IP. However, for this IP, it
can be shown that the extreme point solutions (i.e. the vertices of the
polyhedron defined by the constraints) are all integral {0,1} in each
coordinate. Moreover, there is a precise sense in which max flow and
min cut can be viewed as dual problems. This is described nicely in
Vazarani (section 12.2).
In order to formulate max flow in standard LP form we reformulate
the problem so that all flows (i.e. the LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows)
we add an edge of infinite capacity from the terminal t to the source
s and hence define a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E
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Max flow-min cut duality continued
For the primal edge capacity constraints, introduce dual (“distance”)
variables di ,j and for the vertex flow conservation constraints, introduce
dual (“potential”) variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i )}
be an intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1; p∗t = 0.
The IP optimum then defines a cut (S ,T ) with S = {i |p∗i = 1} and
T = {i |p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first
constraint forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut.
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Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.

Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.

As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.

We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.
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Primal dual for f -frequency set cover continued
Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
ei ∈ Sj and

∑
{k:ei∈Sj} yj = wj

C′ := C′ ∪ {Sj}
End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.
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Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .
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More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.
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A primal dual algorithm with reverse delete :
the weighted vertex feedback problem

The vertex feedback problem

Given a graph G = (V ,E ), a feedback vertex set (FVS) F is a subset of
vertices whose removal will make the resulting graph acyclic. That is, if
S = V − F , then G [S ] = (S ,E [S ]) is acyclic where G [S ] is the graph
induced by S .

The (weighted) feedback vertex set problem is to compute a
miniumm size (weight) feedback vertex set.

The problem (i.e. in its decision version) was one of Karp’s original
NP complete problems. It has application to circuit design and
constraint satisfaction problems. It is as hard as vertex cover.

An obvious IP for this problem would have the constraints∑
v∈C xv ≥ 1 for every cycle C in the graph. Not only is this possibly

an exponential size IP (which might not be a problem), it is known
that the integrality gap is Θ(log |V |).
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An alternative IP/LP for the FVS problem

Chudak et al [1998] provide primal dual interpretations for the
2-approximation algorithms due to Becker and Geiger [1994] and
Bafna, Berman, Fujito [1995]. In the primal dual interpretations, both
algorithms use almost the same IP representation and method for
raising dual variables.

The basic fact underlying the IP representations is the following:

Fact

Let d(v) be the degree of v , b(S) = |E [S ]| − |S |+ 1 and τ(S) = the size
of a minimal feedback set for G [S ]. Then if F is any FVS, and E [S ] 6= ∅
then

1
∑

v∈F [dS(v)− 1] ≥ b(S) for all S ⊆ V and hence

2
∑

v∈F dS(v) ≥ b(S) + τ(S)
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Primal dual for FVS continued

The IP/LP and the resulting primal dual algorithm is a little easier to state
for the Berger and Geiger algorithm but the analysis is perhaps a little
simpler for the Bafna et al. algorithm. Here is the formulation for the
Berger and Geiger algorithm:

Primal for Berger and Geiger algorithm

P: minimize
∑

v∈V wvxv
subject to

∑
v∈S dS(v)xv ≥ b(S) + τ(S) for all S ⊆ V with E [S ] 6= ∅

IP: xv ∈ {0, 1} LP: xv ≥ 0

The dual

D: maximize
∑

S(b(S) + τ(S))yS
subject to

∑
S :v∈S dS(v)yS ≤ wv for all v ∈ V

yS ≥ 0 for all S ⊆ V with E [S ] 6= ∅

Note: These are exponential size LPs but that will not be a problem.
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Primal dual for Berger and Geiger

yv = 0 for all v ; ` := 0;F := ∅
V ′ := V ;E ′ := E
While F is not a FVS for (V ′,E ′)
` := `+ 1
recursively remove all isolated vertices and degree 1 vertices and incident

edges from (V ′,E ′)
S := V ′ In the Bafna et al algorithm S is not always set to V ′

Increase yS until ∃v` ∈ S :
∑

T :v`∈T dT (S)vT = wv`

F := F ∪ {v`}
Remove v` from V ′ and all incident edges from E ′

End While
For j = `..1 % This is the reverse delete phase

If F − {vj} is an FVS then F := F − {vj}
End If

End For
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Comments on the primal dual for Berger and Geiger
algorithm

The algorithm as originally stated shows how to efficiently find a v` so
as to make the the dual constraint tight; namely let
v` = argminv∈Swv/dS(v`) and let ε = wv`/dS(v`). Then εdS(u) is
subtracted from wu for all u ∈ S .

It is easy to verify that any FVS is a solution to the primal and
conversely any IP solution is an FVS.

It is immediate that the F computed is an (integral) FVS since the
While condition forces this.

The analysis shows that for the dual LP constructs a feasible
fractional {yS} solution satisfying:∑

v∈F wv ≤ 2
∑

S(b(S) + τ(S))− 2
∑

S yS ≤ 2
∑

S(b(S) + τ(S))

Therefore, the primal dual algorithm is a 2-approximation algorithm.

The integrality gap is then at most 2 and this is known to be tight. It
is also interesting to note that the dual objective function cannot be
efficiently evaluated since τ(S) is the optimal FVS value for G [S ].

34 / 34


