
CSC2420 Spring 2015: Lecture 5

Allan Borodin

February 5, 2015

1 / 36

Announcements and todays agenda

Announcements
The first three questions for the second problem set are now posted.

Todays agenda

1 Finish up discusion of non-oblvious local search for Exact Max-2-Sat
2 Some experiments regarding various Max-Sat algorithms
3 Max Flow and the Ford Fulkerson template.
4 Some applications of max flow

2 / 36

The non-oblivious local search for Exact Max-2-Sat
We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change). Recall that Si are those closes satisfied by
exactly i literals.

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
3 / 36

Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1

2
P2,j −

3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain

3W (S0) ≤W (S1) + W (S2)

4 / 36

Some experimental results concerning Max-Sat

Of course, one wonders whether or not a worse case approximation
will actually have a benefit in “practice”.

“In practice”, local search becomes more of a “heuristic” where one
uses various approaches to escape (in a principled way) local optima
and then continuing the local search procedure. Perhaps the two most
commonly used versions are Tabu Search and Simulated Annealing.

Later, we will also discuss methods based on “random walks”.

This takes us beyond the scope of this course as we view these
algorithmic idea as starting points.

But for what it is worth, here are some experimental results both for
artifically constructed instances and well as for one of the many
benchmark test sets for Max-Sat. These experimetns suggest that
non-oblivios local search can have “practical” as well as theoretical
application.

5 / 36

Experiment for unweighted Max-3-Sat

50 250 450 650 850 1050
0

0.005

0.01

0.015

0.02

0.025

Number of variables

U
n

s
a

t
ra

ti
o

OLS

NOLS

TS

NOLS+TS

SA

MWS

Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin]

6 / 36

Experiment for Benchmark Max-Sat

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.

References

1. E. Aarts and J. Lenstra, editors. Local Search in Combinatorial Optimization.
Princeton University Press, second edition, 2003.

2. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in
hard optimization problems. Nature, 435:759–764, 2005.

3. D. Achlioptas, A. Naor, and Y. Peres. On the maximum satisfiability of random
formulas. JACM, 54(2), 2007.

4. D. Achlioptas and Y. Peres. The threshold for random k-sat is 2klog2 − o(k).
JAMS, 17(2):947–973, 2004.

5. J. Argerlich, C. M. Li, F. Manya, and J. Planes. The first and second max-sat
evaluations. Journal on Satisfiability, Boolean Modeling and Computation, 4:251–
278, 09/2008 2008.

6. T. Asano and D. P. Williamson. Improved approximation algorithms for max sat.
J. Algorithms, 42(1):173–202, 2002.

[From Pankratov and Borodin]

7 / 36

The jump local search algorithm for makespan on
identical machines

Start with any initial solution

It doesn’t matter how jobs are arranged on a machine so the
algorithm can move any job (on a “critical machine” defining the
current makespan value) if that move will “improve things”.

I That is, a (successful) jump move is one that moves any job to another
machine so that either the makespan is decreased or the number of
machines determining the current makespan is decreased.

Note: Strictly speaking, this is a non-oblivious local search as we
may not be decreasing the current makepsan.

Finn and Horowitz [1979] prove:
that the “locality gap” for this local search algorithm is 2− 2

m+1 .
That is, this is the worst case ratio for some local optimum
compared to the global optimum.

To bound the number of iterations, in moving Jk ,
it should be moved to a machine having the current minimum load.

8 / 36

A more complicated local search for makespan

The jump local search does not provide as good an approximation as
the LPT greedy algorithm and doesn’t provide a constant
(independent of m) approximation for the makespan problem in the
uniformly related machines model.

There is a more involved neighbourhood called the push
neighbourhood, inspired by the Kernighan and Lin variable depth
local search algorithms for graph partitioning and TSP.

9 / 36

Push operation

A push operation is a sequence of jumps defined as follows:

A push is initiated by a jump of a job Jk on a critical machine to a
machine Mi on which it “fits in the sense that
pk +

∑
Jj on Mi and pj≥pk pj is less than the current makespan.

If smaller (i.e. with pj < pk) jobs on Mi cause the makespan on Mi

to equal or exceed the current makespan then in order of smallest
jobs first, we keep moving small jobs to a priority queue.

We then try to move jobs (in order of the largest job first) on the
queue to a machine on which it fits (in which case the operation was
unsuccessful) and continue the process until either there is no
machine on which it fits or the priority queue is empty.

10 / 36

Locality gaps for push local search

Since a push optimal solution is also a jump optimal solution, it
follows that the push local search has locality gap at most 2− 2

m+1 .

The current lower bound on the locality gap is 4m
3m+1

The bound 8
7 is tight for m = 2 and hence beats LPT for m = 2

machines.

For uniformly related machines, the jump locality gap is at most
2− 2

m+1 and the lower bound is arbitrarily close to 3/2.

Push does not give a constant (independant of m) approximation for
the restricted or unrelated machines models.

11 / 36

The (metric) facility location and k-median problems

Two of the most studied problems in operations research and CS
algorithm design are the related uncapacitated facility location
problem (UFL) and the k-median problem. In what follows we restrict
attention to the (usual) metric case of these problems defined as
follows:

Definition of UFL

Input: (F ,C , d , f) where F is a set of faciltites, D is a set of clients or
cities, d is a metric distance function over F ∪D, and f is an opening cost
function for facilities.
Output: A subset of facilities F ′ minimizing

∑
i∈F ′ fi +

∑
j∈C d(j ,F ′)

where fi is the opening cost of facility i and d(j ,F ′) = mini∈F ′d(j , i).

In the capacitated version, facilities have capacities and cities can
have demands (rather than unit demand). The constraint is that a
facility can not have more assigned demand than its capacity so it is
not possible to always assign a city to its closest facility.

12 / 36

UFL and k-median problems continued

Deifnition of k-median problem

Input: (F ,C , d , k) where F ,C , d are as in UFL and k is the number of
facilities that can be opened.
Output: A subset of facilities F ′ with |F ′| ≤ k minimizing∑

i∈F ′ fi +
∑

j∈C d(j ,F ′)

These problems are clearly well motivated. Moreover, they have been
the impetus for the development of many new algorithmic ideas which
we will hopefully at least touch upon throughout the course.

There are many variants of these problems and in many papers the
problems are defined so that F = C ; that is, any city can be a facility.
If a solution can be found when F and C are disjoint then there is a
solution for the case of F = C .

13 / 36

UFL and k-median problems continued

It is known (Guha and Khuller) that UFL is hard to approximate to
within a factor better than 1.463 assuming NP is not a subset of
DTIME (nlog log n) and the k-median problem is hard to approximate to
within a factor better than 1 + 1/e ≈ 1.736 (Jain, Mahdian, Saberi).

The UFL problem is better understood than k-median. After a long
sequence of improved approximation results the current best
polynomial time approximation is 1.488 (Li, 2011).

For k-median, until recently, the best approximation was by a local
search algorithm. Using a p-flip (of facilities) neighbourhood, Arya et
al (2001) obtain a 3 + 2/p approximation which yields a 3 + ε
approximation running in time O(n2/ε).

Li and Svennsson (2013) have obtained a (1 +
√

3 + ε) approximation
running in time O(n1/ε

2
). Surprisingly, they show that an α

approximate “pseudo solution” using k + c facilities can be converted
to an α + ε approximate solution running in nO(c/ε) times the
complexity of the pseudo solution.

14 / 36

Some concluding comments (for now) on local
search

We will hopefully return later to local search and in particular
non-oblivious local search.

But suffice it to say now that local search is
the basis for many practical algorithms, especially when the idea is
extended by allowing some well motivated ways to escape local
optima (e.g. simulated annealing, tabu search).

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
analyzed. It is not surprising then that there hasn’t been much
interest in formalizing the method and establishing limits.

LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

I No such method is known to run in polynomial time in the worst case.

15 / 36

Ford Fulkerson max flow based algorithms
A number of problems can be reduced to the max flow problem.

Flow Networks

A flow network F = G , s, t, c) consists of a “bi-directional” G = (V ,E) ,a
source s and termnal node t, and a (capacity) function c which is a
non-negative a real valued function on the edges.

What is a flow

A flow f is a real valued function on the edges satisfying the following
properties:

1 f (e) ≤ c(e) for all edges e (capacity constraint)

2 f (u, v) = −f (v , u) (skew symmetry)

3 For all nodes u (except for s and t), the sum of flows into (or out of)
u is zero. (Flow conservation).
Note: this is the “flow in = flow out” constraint for the convention of
only having non negative flows.

16 / 36

The max flow problem

The goal of the max flow problem is to find a valid flow that
maximizes the flow out of the source node s. As we will see this is
also equivalent to maximizing the flow in to the terminal node t.
(This should not be surprising as flow conservation dictates that no
flow is being stored in the other nodes.) We let
val(f) = |f | denote the flow out of the source s for a given flow f .

We will study the Ford Fulkerson augmenting path scheme for
computing an optimal flow. I am calling it a scheme as there are
many ways to instantiate this scheme although I dont view it as a
general paradigm in the way I view (say) greedy and DP algorithms.

17 / 36

A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we can define
the residual graph Gf = (V ,E (f)) where E (f) is the set if all edges
e having positive residual capacity ; i.e. the residual capacity
of e wrt to f is cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.
Also note that with our convention of negative flows, even a zero
capacity edge (in G) can have residual capacity.

The basic concept underlying Ford Fulkerson is that of an
augmenting path which is an s − t path in Gf . Such a path can be
used to augment the current flow f to derive a better flow f ′.

Given an augmenting path π in Gf , we define its residual capacity
wrt f as cf (π) = min{cf (e)|e in the path π}.

18 / 36

The Ford Fulkerson scheme

Ford Fulkerson

f := 0 ;
Gf := G %initialize
While there is an augmenting path in Gf

Choose an augmenting path π
f := f + fpi % Note this also changes Gf

End While

I call this a scheme rather than a well specified algorithm since we have
not said how one chooses an augmenting path (as there can be many such
paths)

19 / 36

The max flow-min cut theorem

Ford Fulkerson Max Flow-Min Cut Theorem

The following are equivalent:

1 f is a max flow

2 There are no augmenting paths wrt flow f ; that is, no s− t path in Gf

3 val(f) = c(S ,T) for some cut (S ,T) ; hence this cut (S ,T) must be
a min (capacity) cut since val(f) ≤ c(S ,T) for all cuts.

Hence the name max flow (=) min cut

20 / 36

Comments on max flow - min cut theorem

As previously mentioned, the Ford Fulkerson algorithms can be viewed
as local search algorithms.

This is a rather unusual local search algorithm in that any local
optimum is a global optimum.

Suppose we have a flow network in which all capacities are integral.
Then :

1 Any Ford Fulkerson implementation must terminate.
2 If the sum of the capacities for edges leaving the source s is C , then

the algorithm terminates in at most C iterations and hence with
complexity at most O(mC).

3 Ford Fulkerson implies that there is an optimal integral flow. (There
can be other non integral optimal flows.)

21 / 36

Good and bad ways to implement Ford Fulkerson

There are bad ways to implement the networks such that

1 There are networks with non rational capacities where the algorithm
does not terminate.

2 There are networks with integer capacities where the algorithm uses
exponential (in representation of the capacities) time to terminate.

There are various ways to implement Ford-Fulkerson so as to achieve
polynomial time. Edmonds and Karp provided the first polynomial
time algorithm by showing that a shortest length augmenting path
yields the time bound O(|V | · |E |2). For me, the conceptually
simplest polynomial time analysis is the Dinitz algorithm which has
time complexity O(|V |2|E |) and also has the advantage of leading to
the best known time bound for unweighted bipartite matching. I
think the best known worst case time for max flow is the
preflow-push-relabel algorithm of Goldberg and Tarjan with time
O(|V | · |E | polylog(|E |). or maybe O(|V | · |E |).

22 / 36

The Dinitz (sometimes written Dinic) algorithm

Gven a flow f , define the leveled graph Lf = (V ′,E ′) where
V ′ = {v |v reachable from s in Gf } and (u, v) ∈ E ′ iff
level(v) = level(u) + 1. Here level(u) = length of shortest path from
s to u.

A blocking flow f̃ is a flow such that every s to t path in Lf has a
saturated edge.

The Dinitz Algorithm

Initialize f (e) = 0 for all edges e
While t is reachable from s in Gf (else no augmenting path)

Construct Lf corresponding to Gf

Find a blocking flow f̂ wrt Lf and set f := f + f̂
End While

23 / 36

The run time of Dinitz’ algorithm

Let m = |E | and n = |V |
The algorithm halts in at most n − 1 iterations (i.e. blocking steps).

The residual graph and the levelled graph can be computed in time
O(m) with breadth first search and using depth first search we can
compute a blocking path in time O(mn). Hence the total time for the
Dinitz blocking flow algorithm is O(mn2)

A unit network is one in which all capaities are in {0,1} a nd for each
node v 6= s, t, either v has at most one incoming edge (i.e. of
capacity 1) or at most one outgoing edge. In a unit network, the
Dinitz algorithm terminates within 2

√
n iterations and hence on such

a network, a max flow can be computed in time O(m
√
n) (Hopcroft

and Karp [1973].

24 / 36

Application to unweighted bipartite matching

We can transform the maximum bipartite matching problem to a max
flow problem.
Namely, given a bipartite graph G = (V ,E), with V = X ∪ Y , we
create the flow network FG = (G ′, s, t, c) where

I G ′ = (V ′,E ′) with V ′ = V ∪ {s, t} for nodes s, t /∈ V
I E ′ = E ∪ {(s, x)|x ∈ X} ∪ {(y , t)|y ∈ Y }
I c(e) = 1 for all e ∈ E ′.

.

Claim: Every matching M in G gives rise to an integral flow fM in FG

with val(fM) = |M|; conversely every integral flow f in FG gives rise to a
matching Mf in G with |M| = val(f).

Hence a maximum size bipartite matching can be computed in time
O(m

√
n) using the Hopcroft and Karp adatpion of the blocking path

algorithm.

Similar ideas allow us to compute the maximum number of edge (or
node) disjoint paths in directed and undirected graphs.

25 / 36

Additional comments on maximum bipartite
matching

There is a nice terminology for augmenting paths in the context of
matching. Let M be a matching in a graph G = (V ,E). A vertex v is
matched if it is the end point of some edge in M and otherwise if is
free. A path π is an alternating path if the edges in π alternate
between M and E −M.

Abusing terminology briefly, an augmenting path (relative to a
matching M) is an alternating path that starts and ends in a free
vertex. An augmenting path in a graph shows that the matching is
not a maximum and can be immediately improved.

Clearly the existence of an augmenting path in a bipartite graph G
corresponds to an augmenting path in the flow graph FG used to
show that bipartite matching reduce to flows.

26 / 36

The Konig-Egevary Theorem

In any graph, the size of every vertex cover must be at least as large
as the size of any matching.

Theorem: Konig [1931], Egervary [1931]

In a bipartite graph, the minimum size of a vertex cover equals the size of
a maximum matching.

In a bipartite graph, a minimum vertex cover and maximum size
matching can be efficiently computed at the same time.

The Konig-Egervary theorem and the efficient computation of the min
vertex cover/maximum matching is a key ingrediant of the Hungarian
method for computing an optimal matching in a weighted bipartite
matching, which is sometimes called the assignment problem.

27 / 36

The weighted bipartite matching problem

Can the flow algorithm for unweighted bipartite matching be modified
for weighted bipartite matching?

The obvious modification would set the capacity of < x , y >∈ E to
be its weight w(x , y) and the capacity of any edge < s, x > could be
set to maxy{w(x , y)} and similarly for the weight of edges < y , t >.

Why doesnt this work?

It is true that if G has a matching of total weight W then the
resulting flow network has a flow of value W .

But the converse fails! Why?

28 / 36

Setting up the Hungarian Algorithm

We will see that this method is intimately tied to the linear
programming (LPs) and duality. I am not sure about the history of
the Hungarian method; it was formalized in 1955 by Kuhn who
attributed the method to Hungarians Konig and Egerva’ry.

Let G = (X ∪ Y),E) be a weighted bipartite graph with wij denoting
the weight of edge (xi , yj). Without loss of generality we can assume
that G is a complete bipartite graph and that |X | = |Y | = n.

A weighted cover is a labelling (u, v) of the vertices (ui = `(xi) and
vj = `(yj)) such that ui + vj ≥ wij for all i , j . (As we will see later,
the labels are the dual variables in a natural LP representation of the
weighted matching problem.)

Given a cover, the equality graph Gu,v is the graph whose edges
correspond to those (xi , yj) such that ui + vj = wij .

29 / 36

The Hungarian Algorithm: Kuhn after Konig and
Egervary

We will explain the algorithm when we get to LP duality but for now here
is a statement taken from West’s text :

The Hungarian Algorithm

Let (u, v) be any initital cover
Let M be a maximum matching in the equality graph
While M is not a perfect matching

Let Q be a vertex cover of size |M|.
Let R = X ∩ Q and T = Y ∩ Q
Let ε = min{ui + vj − wij : xi ∈ X − R, yj ∈ Y − T}
ui := ui − ε for xi ∈ X − R
vj := vj + ε for yj ∈ T
Form the new equality graph and maximum matching

End While
Return M as a maximum weighted matching.

30 / 36

The metric labelling problem

We consider a problem well motivated by applications in, for example,
information retrieval. (See Kleinberg and Tardos text)

The metric labelling problem

Given: graph G = (V ,E), a set of labels L = {a1, . . . , ar} in a metric
space M with distance δ, and a cost function κ : V × L→ <≥0. The goal
is to construct an assignment α of labels to the nodes V so as to minimize∑

i∈V κ(i , α(i)) +
∑

(i ,j)∈E pi ,j · δ(α(i), α(j))

The idea is that κ represents a cost for labelling the node (e.g. a penalty
for a bad classification of a web page), p represents the importance of that
edge (e.g. where in a web page a particular link occurs) and δ represents
the (basic or unweighted) cost of giving different labels to nodes that are
related (e.g. the penalty for different labellings of web pages that are
linking to each other or otherwise seem to be discussing similar topics.

31 / 36

The binary label case

A case of special interest and the easiest to deal with is when the
metric is the binary {0, 1} metric; that is, δ(a, b) = 1 if a 6= b and 0
otherwise. (When there are only two labels, the binary {0, 1} metric
is the only metric.)

The case of two labels suggests that the problem might be formulated
as a min cut problem. Indeed this can be done to achieve an optimal
algorithm when there are only two labels. For more than two labels,
the binary metric case remains NP hard but a there is a
2-approximation via a local search algorithm that uses min cuts to
search a local neighbourhood.

32 / 36

The case of two labels

The problem for two labels can be restated as follows: find a partition
V = A ∪ B of the nodes so as to minimize∑

i∈A bi +
∑

j∈B aj +
∑

(i ,j)∈A×B pi ,j

We transform this problem to a min cut problem as follows: construct
the flow network F = (G ′, s, t, c) such that

I G ′ = (V ′,E ′)
I V ′ = V ∪ {s, t}
I E ′ = {(u, v)|u 6= v ∈ V } ∪ {(s, u)|u ∈ V } ∪ {(u, t)|u ∈ V }
I c(i , j) = c(j , i) = pi,j ; c(s, i) = ai ; c(i , t) = bi

Claim:

For any partition V = A ∪ B, the capacity of the cut
c(A,B) =

∑
i∈A bi +

∑
j∈B aj +

∑
(i ,j)∈A×B pi ,j .

33 / 36

Flow networks with costs
We now augment the definition of a flow network F = (G , s, t, c , κ) where
κ(e) is the non negative cost of edge e. Given a flow f , the cost of a path
or cycle π is

∑
e∈π κ(e)f (e).

MIn cost flow problem

Given a network F with costs, and given flow f in F , the goal is to find a
flow f of minimum cost. Sometimes we are only interested in a min cost
max flow.

Given a flow f , we can extend the definition of an augmenting path in
F to an augmenting cycle which is just a simple cycle (not necessarily
including the source) in the residual graph Gf .

If there is a negative cost augmenting cycle, then the flow can be
increased on each edge of this cycle which will not change the flow
(by flow conservation) but will reduce the cost of the flow.

A negative cost cycle in a directed graph can be detected by the
Bellman Ford DP for the single source shortest path problem.

34 / 36

Bellman-Ford DP for shortest path

Dijkstra’s single source least cost path algorithm is very efficient but
is restricted to directed graphs where all edges are non-negative.

The definition of a least cost path is well defined as long as there are
no negative directed cycles. If all cycles have positive cost, then a
least cost path must be a simple path.

The Bellman-Ford single source least cost path algorithm DP
algorithm is less efficient itan Dijkstra but works correctly as long as
there are no negative cycles.

Bellman-Ford is based on the following semantic array:
C [i , v] is the least cost of a simple path π from source s to v having
path length at most i .

Moreover, Belmman-Ford allows us to detect negative cycles. How?

35 / 36

Weighted interval scheduling on m machines
We have seen that :

1 For the unweighted interval scheduling problem on m machines, the
“best fit” EFT greedy algorithm is optimal.

2 For m = 1, there is an optimal DP or priority stack (i.e. local ratio)
algorithm (again using the EFT ordering) that optimally solves the
weighted problem.

3 For arbitrary m, the local ratio algorithm has approximation ratio
2− 1

m and no fixed order priority stack algorithm can be an optimum.
An optimal priority pBT algorith requires time O(nm).

4 Arkin and Silverberg [1987] achieve time O(n2 log n) by reducing the
m machine weighted interval problem to a min cost max flow problem.

5 It can also be seen that the weighted version of m machine interval
scheduling problem is polynomial time since the problem can be
expressed as an integer program (IP) which is totally unimodular.

6 Yannakakis and Gavril [1987] show that the Maximum m colourable
subgraph problem is NP hard for split graphs (which are chordal).

36 / 36

