
CSC2420 Spring 2015: Lecture 4

Allan Borodin

January 29, 2015

1 / 1

Announcements and todays agenda

Thank you for submitting assignments. Please note what I have now
appended to start of the assignment. Will post some new questions
for next assignment over the weekend.

Tomorrow Friday, Jan 30, 11 AM, GB221. Talk by Aaron Potechin on
”hidden clique problem”.

We will have a number of “theoretical CS” talks this term, some at
this time slot and some at Tuesdays and Thursdays at 11.

Todays agenda

1 We begin with a natural DP for the knapsack problem.
2 We then consider an alternative DP which with the use of scaling

allows us to derive a FPTAS for the knapsack problem.
3 DP based approach for deriving a PTAS (poly in n and m, and

exponential in 1
ε) for makespan on identical machines.

4 DP algorithms that make more than one recursive call per decision
choice.

5 Mention some attempts to formally model DP algorithms.
6 Introducing local search

2 / 1

A pseudo polynomial time “natural DP” for
knapsack
Consider an instance of the (NP=hard) knapsack problem; that is, we are
given item {(vk , sk)|1 ≤ k ≤ n} and a knapsack capacity C . Following
along the lines of the WISP DP, the following is a reasonably natural
approach to obtain a “pseudo polynomal space and time” DP:

For 1 ≤ i ≤ n and 0 ≤ c ≤ C , define V [i , c] to be the value of an
optimum solution using items Ii ⊆ {I1, . . . , Ii} and satisfying the size
constraint that

∑
Ij∈Ii sj ≤ c .

A corresponding recursive DP is as follows:
1 V [0, c] = 0 for all c
2 For i > 0, V [i , c] = max{A,B} where

F A = V [i − 1, c]
F B = vi + V [i − 1, c − si] if si ≤ c and V [i − 1, c] otherwise.

Note: easy to make mistakes so again have to verify that this recursive
definition is correct.

The space and time complexity is O(nC) which is pseudo polynomial
in the sense that C can be exponential in the encoding of the input.

3 / 1

Dynamic programming and scaling

We have previously seen that with some use of brute force and greediness,
we can achieve PTAS algorithms for the identical machines makespan
(polynomial in the number n of jobs but exponential in the number m of
machines) and knapsack problems. We now consider how to achieve an
FPTAS for the knapsack problem and then how dynamic programming
(DP) can be used to acheive a PTAS for the makespan problem which is
polynomial in m and n.
To achieve these improved bounds we will combine dynamic programming
with the idea of scaling inputs.

4 / 1

An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a different “pseudo polynomial” time
DP for the problem, namely an algorithm that is polynomial in the
numeric values vj (or V =

∑
vj) (but not polynomial in the encoded

length |vj | of the input values as in what I called the natural DP for the
knapsack problem).

Define S [j , v] = the minimum size s needed to achieve a value of at least
v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This again is the essense of DP algorithms; namely, defining an approriate
generalization of the problem such that

1 the desired result can be easily obtained from ths array S [,]

2 each entry of the array can be easily computed given “previous
entries”

5 / 1

How to compute the array S [j , v] and why is this
sufficient

The value of an optimal solution is max{v : S [n, v] ≤ C}.
We have the following equivalent recursive definition that shows how
to compute the entries of S [j , v] for 0 ≤ j ≤ n and v ≤

∑n
j=1 vj .

1 Basis: S [0, v] =∞ for all v > 0 and S [j , 0] = 0 for all j ≥ 0.
2 Induction: S [j , v] = min{A,B} where A = S [j − 1, v] and

B = S [j − 1,max{v − vj , 0}] + sj

The running time is O(nV) where V =
∑n

j=1 vj .

Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])
is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility.

6 / 1

The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2

.

We will need a combination of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.

7 / 1

The high level idea of the makespan PTAS
Let T be a candidate for an achievable makespan value. We csan
assume T ≥ maxjp + j .

Our goal is to either show that the makespan is greater than T or
provide a solution with makespan at most (1 + ε)T .

Depending on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled sizes of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a solution that achieves
makespan T . Accounting for the scaling down will only increase the
makespan for the large jobs to be at most (1 + ε)T .

If there is a solution for the scaled large jobs then small jobs can
either be greedily scheduled on some machine with current makespan
T or makespan T is not possible.

We use binary search to find a good T . That is, if we were not
successful for a given T , then we double our estimate for T ; if
successful we halve the estimate.

8 / 1

The optimal DP for a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of szie zi .

M[x1, . . . , xd] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T .

Then n jobs can be scheduled within makespan T iff M[n1, . . . , nd] is
at most m.

9 / 1

Computing M[x1, . . . , xd]

Clearly M[0, . . . , 0] = 0 for the base case.

Let V = {(v1, , vd)|
∑

i vizi ≤ T} be the set of configurations that
can complete on one machine within makespan T ; that is, scheduling
vi jobs with size zi on one machine does not exceed the target
makespan T .

M[x1, . . . , xd] = 1 + min(v1,...,vd)∈V :vi≤xi M[x1 − v1, . . . , xd − vd]

There are at most nd array elements and each entry uses
approximately nd time to compute (given previous entries) so that the
total time is O(n2d).

Must any (say DP) algorithm be exponential in d?

10 / 1

Large jobs and scaling (not worrying about any
integrality issues)

A job is large if pi ≥ T/s = T · ε
Scale down large jobs to have size p̃i = largest multiple of T/(s2)

pi − p̃i ≤ T/(s2)

There are at most d = s2 job sizes p̃

There can be at most s large jobs on any machine not exceeding
target makespan T .

11 / 1

Accounting for the scaling down and taking care of
the small jobs

If we cannot schedule the large jobs with makepsan T , then clearly T
is too small. Otherwise to account for the scaling down, each large
job was scaled down by at most 1

s2
T and there are at most s jobs on

any machine so that the large jobs will not exceed makespan
(1 + 1/s)T = (1 + ε).

We now wish to add in the small jobs with sizes less than T/s. We
try to add small jobs to some machine with current makespan T
(before adding the small job). If this is not possible, then makespan
T is not possible since then every machine will be exceeding
makespan T and thus the total load

∑n
j=1 pj > mT proving that

makespan T is not possible. The addition of any small job can only
increase the makespan by at most T ε.

If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T/(s2) so this only increases the makespan to (1 + 1/s)T .

12 / 1

DP using many simultaneous recursive calls

The previous DP examples made a choice (with respect to a possible
opimal solution) and then made one recursive call for each of the
possible choices.

Many DP algorithms will do a number of simultaneous recursive calls
for a given choice.

A simple example is a dynamic program for computing the all pairs
least cost paths in a directed graph G = (V ,E) based on the
following semantic array. Let C [k , u, v], for 0 ≤ k ≤ dlog2 V e and
u 6= v , be the least cost path π from u to v with π having path
length at most 2k .

Another example is a simple DP for the WMIS problem on trees (and
then of course for forests). . Namely, root the tree T = (V ,E) at an
arbitrary node r . Then for every node u ∈ V , we want to compute
the optimal WMIS on the subtree rooted at u.
The choice to be made is whether or not to include u in the optimal
subtree rooted at u.

13 / 1

Graphs of bounded treewidth

Given the simplicity of trees, it is interesting to consider what graphs
are “close to being trees” and then would share (to some extent) the
nice properties of trees.

This has led to the concept of the treewidth of a graph. Like degree k
graphs, k-claw free graphs, inductive k independent graphs, etc.
every graph G = (V ,E) has treewdith at most |V | − 1.

The definition will insure that trees (and forests) have treewidth 1
and that the complete graph will have treewidth |V | − 1.

The definition will also insure that graphs of small treewidth can be
decomposed (similar to trees) into independent components so that
dynamic programming can be applied.

Claim: “Large networks in the real world often have very small
treewidth”. See Chapter 10 or Kleinberg and Tardos as well as many
other sources concerning bounded treewidth and related concepts
such as clique-width and path-width.

14 / 1

Graphs of bounded treewdith continued

A tree decomposition of G = (V ,E) is a tree T = (I ,F) where each
node i ∈ I represents a bag Xi such that

1
⋃

i∈I Xi = V
2 ∀(u, v) ∈ E , there is some i ∈ I such that {u, v} ∈ Xi

3 ∀v ∈ V , the set Iv = {i ∈ I |v ∈ Xi} is a connected subtree T ′ of T ;
that is, there is a unique path in T between any two nodes in Iv .

The treewidth of a tree decomposition is defined as maxi∈I |Xi | − 1.
And the treewidth of G is the minimum treewidth over all tree
decompositions of G

Complexity of WMIS on graphs of bounded treewidth

Theorem: There is an O(k4k+1|V |) time optimal DP algorithm for WMIS
applied to graphs of treewidth k

15 / 1

Very brief sketch of WMIS treewidth result

Given a graph G = (V ,E) and k , it is possible in time exponential in
k3 and linear in |E | to determine if G has treewidth k and if so to
construct a tree decomposition T = (I ,F) of width k with |I | ≤ |V |.
Having rooted the tree decomposition, the idea of the recursion at
any tree node i (with say bag Xi) is to consider each of the at most
2k+1 possible independent subsets of Xi .

This is an example of what is called paramterized complexity; that is,
finding an appropriate parameter k of (say) an NP-hard problem and
showing that it ican be computed (usually one means optimally
computed) in time f (k) · poly(|w |) where w is an encoding of the
input.

Graphs of treewidth k are a subset of graphs having inductive degree
k and hence a subset of inductive k independent graphs.

16 / 1

The pBT model: An attempt to model some simple
DP (and backtracking) algorithms

In an extension of the priority framework, Alekhnovich et al [2011]
consider the pBT model (for prioritized branching tree or prioritized
backtrack) where upon considering an input item, the algorithm can
branch on different possible decisions. The algorithm can also
terminate branches whenever it wishes.

For search problems, the goal is to have a branch that produces a
feasible solution if one exists, and for optimization problems the
solution having the best approximation ratio is chosen. (Aside: it
would have been better to just have non deterministic branching
instead of branching on decisions.)

The complexity of such an algorithm is size (or maximum “width”) or
the time in say a depth first search of the pBT tree.

The pBT model can capture DPs where the implicit induction is on
the number of items as in the interval scheduling and knapsack DPs.

17 / 1

Some pBT results
In the pBT model, we can optimally solve one machine interval
scheduling with fixed order width n (the number of intervals) using
the standard DP, and Ω(n) width is required for any adaptive order
pBT that optimally solves the problem. Furthermore for any fixed m,
the width required for optimally solving the m machine problem is
Ω(nm) which can be achieved again using DP.
In the pBT model, we have the following result for the knapsack
problem: We can obtain a (1 + ε)-approximation with width O(1

ε2
)

(based on the Lawler adaption of the Ibarra and Kim FPTAS) and any
adaptive order pBT algorithm that achieves a (1 + ε)-approximation

requires width Ω(1
ε3.17

) and width
(n/2
n/4

)
= Ω(2n/2/

√
n) for optimality.

The lower bounds hold even for the Subset-Sum problem.
Chvátal [1980] established an exponential time bound for the
knapsack problem with respect to a model that captures a style of
branch and bound algorithms. Similar attempts to formalize some
branch and bound methods were obtained by Chvátal [1977] for the
MIS problem and by McDiarmid [1979] for the graph colouring.

18 / 1

The pBP model: a more ambitious DP model
The pBP (for prioritized branching program) model extends the pBT
model by combining merging with branching so that the underlying
structure of a pBP algorithm is a rooted DAG and not a rooted tree.
The semantics are a little involved but the idea is meant to better
capture memoization which is central to DP algorithms (in the sense
of distinguishing them from divide and conquer algorithms).
In the pBP model, there is an optimal O(n3) width algorithm for
solving the shortest path problem when there are negative weights but
not negative cycles. If the input graph has negative cycles the
algorithm will output an arbitrary set of edges. Here the input items
are In contrast, any pBT algorithm would require exponential
width to solve the promise version of the shortest path problem on
some instance (which could be a graph with negative cycles).
For the bipartite matching problem where the input items are edges,
any pBP algorithm requires exponential width. A challenge is to
prove such a result when the input items are vertices.
There is an optimal max flow algorithm for bipartite matching.

19 / 1

Combinatorial DP Programs

Finally we mention another model by Bompadre [2012] that also captures
a limited class of DP algorithms. This model is incomparable with the
pBT and pBP models. There are a number of positive and negative results
derived by Bompadre.

20 / 1

Local Search: the other conceptually simplest
approach
We now begin a discussion of the other (than greedy) conceptually
simplest search/optimization algorithm, namely local search.

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S ′ in “Nbhd(S)”
S := S ′

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What consititutes a reasonable definition of a local neighbourhood

Nbhd(S)?
3 What do we mean by “better”?

Answering these questions (especially as to defining local neighbourhood)
will often be quite problem specific.

21 / 1

Towards a precise definition for local search

We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any efficiently computed solution.

We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some small k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 We can view Ford Fulkerson flow algorithms (to be discussed) as local
search algorithms where the (possibly exponential size but efficiently
searchable) neighbourhood of a flow solution S are flows obtained by
adding an augmenting path flow.

22 / 1

What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we may insist that there is a “sufficiently better”
improvement rather than just better.

23 / 1

The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

I Given a (undirrected) graph G = (V ,E) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) of V so as to maximize the size (or weight) of
the cut E ′ = {(u, v)|u ∈ A, v ∈ B, (u, v) ∈ E}.

We can think of the partition as a characteristic vector χ in {0, 1}n
where n = |V |. Namely, say χi = 1 iff vi ∈ A.

Let Nd(A,B) = {(A′,B ′) | the characteristic vector of (A′) is
Hamming distance at most d from (A)}

So what is a natural local search algorithm for (weighted) max cut?

24 / 1

A natural oblivious local search for weighted max cut
Single move local search for weighted max cut

Initialize (A,B) arbitrarily
WHILE there is a better partition (A′,B ′) ∈ N1(A,B)

(A,B) := (A′,B ′)
END WHILE

This single move local search algorithm is a 1
2 approximation; that is,

when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) ≥ 1

2W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the
approximation ratio is at least as good as the locaity gap.

25 / 1

Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:∑
v∈A

w(u, v) ≤
∑
v∈B

w(u, v) for every u ∈ A

Summing over all u ∈ A, we have:

2
∑
u,v∈A

w(u, v) ≤
∑

u∈A,v∈B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
∑

u,v∈B
w(u, v) ≤

∑
u∈A,v∈B

w(u, v) = w(A,B)

Adding these two inequalites and dividing by 2, we get:∑
u,v∈A

w(u, v) +
∑

u,v∈B
w(u, v) ≤ w(A,B)

Adding w(A,B) to both sides we get the desired W ≤ 2w(A,B).

26 / 1

The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.

I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the state 1
2 totality ratio

by only continuing when we find a solution (A′,B ′) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A′,B ′) ≥ (1 + ε)w(A,B) for any ε > 0

This results in a totality ratio 1
2(1+ε) with the number of iterations

bounded by n
ε logW .

27 / 1

Final comment on this local search algorithm

It is not hard to find an instance where the single move local
search approximation ratio is 1

2 .

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B)
still results in an approximation ratio that is essentially 1

2 .
And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

There is
a vector program relaxation of a quadratic program that leads to
a .878 approximation ratio.

28 / 1

Exact Max-k-Sat
Given: An exact k-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i . . . ∨ `ki) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .

In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

It is NP hard to achieve an approximation better
than 7

8 .
29 / 1

The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment τ
WHILE there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ)

τ := τ̂
END WHILE

30 / 1

How good is this algorithm?
Note: Following the standard convention for Max-Sat, I am using
approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3 .

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment τ such that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses,

and we say that the “totality ratio” is at least 2
3 .

(More generally for Exact Max-k-Sat the ratio is k
k+1).

This ratio is essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm
and then apply local search. 31 / 1

Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let

I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si) be the corresponding weight.

We will say that a clause involves a variable xj if either
xjor x̄j occurs in the clause. Then for each j , let

I Aj be those clauses in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj

such that it is the literal xj or x̄j that is satisfied in C
by τ .

I Cj be those clauses in S2 involving the variable xj .

Let W (Aj),W (Bj) be the corresponding weights.

32 / 1

Analysis of the oblivious local search (continued)

Summing over all variables xj , we get

I 2W (S0) =
∑

j W (Aj) noting that each clause in S0 gets counted twice.
I W (S1) =

∑
j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.

33 / 1

Finishing the analysis
It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we
have to worry about the number of iterations. And here again
we can speed up the termination by insisting that any improvement
has
to be sufficiently better.

34 / 1

Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .

35 / 1

The non-oblivious local search
We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.

36 / 1

