
CSC2420 Spring 2015: Lecture 3

Allan Borodin

January 22, 2015

1 / 1

Announcements and todays agenda

Assignment 1 due next Thursday. I may add one or two additional
questions today or tomorrow.

Todays agenda

1 Complete missing discussion from last week (i.e. slides 10-16 on
extensions of the priority model and slides 22-27 start of dynamic
programming).

2 We will discuss Greedyα, a revocable priority algorithm for the
weighted interval selection problem WISP (and WJISP, weighted job
interval selection). For WISP, this algorithm has an approximation
ratio of 1

α(1−α) which is optimized at α = 1/2.
3 We then introduce the priority stack model. This model provides an

optimal algorithm for WISP and a 2-approximation for WJISP.
4 The ISP (resp. JISP) problems are instances of the MIS problem for

chordal graphs (resp inductive 2-indpendent graphs) which will be
defined.

5 We return briefly to greedy algorithms and consider “the natural” and
modified greedy algorithms for the weighted vertex cover problem..

6 We then move on to dynamic programming.

2 / 1

Extensions of the priority model: priority with
revocable acceptances

For packing problems, we can have priority algorithms with revocable
acceptances. That is, in each iteration the algorithm can now reject
previously accepted items in order to accept the current item.
However, at all times, the set of currently accepted items must be a
feasible set and all rejections are permanent.

Within this model, there is a 4-approximation algorithm for the
weighted interval selection problem WISP (Bar-Noy et al [2001], and
Erlebach and Spieksma [2003]), and a ≈ 1.17 inapproximation bound
(Horn [2004]). More generally, the algorithm applies to the weighted
job interval selection problem WJISP resulting in an 8-approximation.

The model has also been studied with respect to the proportional
profit knapsack problem/subset sum problem (Ye and B [2008])
improving the constant approximation. And for the general knapack
problem, the model allows a 2-approximation.

3 / 1

Other similar models allowing limited changes of
previous decisions

There are other online and greedy-like settings (beyond packing
problems) in which algorithms allowing limited changes of previous
decisions have been considered.

Later we will consider online bipartite matching (still a packing
problem) where the concern has been how many edge reassignments
are needed to obtain an optimal or near optimal matching.

Makespan has also been studied in terms of reassignments of items.

We will soon mention Graham’s convex hull algorithm which can be
viewed as another example of a revocable acceptance type of
algorithm.

4 / 1

The Greedyα algorithm for WISP and WJISP
The Erlebach and Spieksma (independently, Bar Noy et al ADMISSION)
algorithm:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S : (S/Ci) ∪ {Ii} feasible
For WISP and WJISP there is a unique conflicting set;
not so for knapsack problem.

if v(Ci) ≤ α · v(Ii) then
S := (S/Ci) ∪ {Ii}

end if
END FOR

Figure : Priority algorithm with revocable acceptances for WISP and WJISP

5 / 1

The approximation bounds for Greedyα
We note that the JISP problem is known to be NP-hard (indeed, NP
hard to approximate to within (1 + δ) factor for some very small
δ > 0). Best known approximation for WJISP is a 2-approximation
(for all practical algorithms this is also the best approximation for the
unweighted case).

The Greedyα algorithm (which is not greedy by my definition) has a
tight approximation ratio of

1 1
α(1−α) for WISP and

2 2
α(1−α) for WJISP.

Sketch of the charging argument for WISP

1 Let A be the final set of intervals selected by Greedyα, T the set of
intervals that occur in the current solution at some time during the
execution and OPT is an optimal solution.

2 Show v(A) ≥ (1− α)v(T).
3 Show how to charge weight of intervals in OPT to intervals in T so

that any interval in Ij ∈ T will receive at most a charge of at most
vj/α. That is, v(T) ≥ αv(OPT).

6 / 1

Graham’s [1972] convex hull algorithm
Graham’s scan algorithm for determining the convex hull of a set of n
points in the plane is an efficient (O(n log n) time) algorithm in the
framework of the revcocable priority model. (This is not a search or
optimization problem but does fit the framework of making a decision for
each input point. For simplicity assume no three points are colinear.)

Choose a point that must be in the convex hull
(e.g. the (leftmost) point p1 having smallest y coordinate)

Sort remaining points p2, . . . , pn by increasing angle with respect to p1
Push p1, p2, p3 on a Stack
for i = 4..n
Push pi onto stack
While the three top points u, v , pi on the Stack make a “right turn”

Remove v from stack
End While
Return points on Stack as the points defining the convex hull.

Figure : The Graham convex hull scan algorithm
7 / 1

Priority Stack Algorithms
For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is to insure the minimality of the
solution; that is, when popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.

8 / 1

Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence interval graphs are chordal) by ordering the intervals
such that f1 ≤ f2 . . . ≤ fn. Trees are also chordal graphs and a PEO is
obtained by stripping off leaves one by one.

9 / 1

MIS and colouring chordal graphs
Using this ordering (by earliest finishing time), we know that there is
a greedy (i.e. priority) algorithm that optimally selects a maximum
size set of non intersecting intervals. The same algorithm (and proof
by charging argument) using a PEO in a fixed order greedy algorithm
optimally solves the unweighted MIS problem for any chordal graph.
This can be shown by an inductive argument showing that the partial
solution after the i th iteration is promising in that it can be extended
to an optimal solution; and it can also be shown by a simple charging
argument.
We also know that the greedy algorithm that orders intervals such
that s1 ≤ s2 . . . ≤ sn and then colours nodes using the smallest
feasible colour is an optimal algorithm for colouring interval graphs.
Ordering by earliest starting times is (by symmetry) equivalent to
ordering by latest finishing times first. The generalization of this is
that any chordal graph can be optimally coloured by a greedy
algorithms that orders vertices by the reverse of a PEO. This can be
shown by arguing that when the algorithm first uses colour k, it is
witnessing a clique of size k. 10 / 1

The optimal priority stack algorithm for the (WMIS)
problem in chordal graphs ; Akcoglu et al [2002]

Stack := ∅ % Stack is the set of items on stack
Sort nodes using a PEO
Set w ′(vi) := w(vi) for all vi

% w ′(v) will be the residual weight of a node
For i = 1..n

Ci := {vj |j < i , vi ∈ Nbhd(vj) and vj on Stack}
w ′(vi) := w ′(vi)− w ′(Ci)
If w ′(vi) > 0 then

push vi onto Stack ; else reject
End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure : Priority stack algorithm for chordal WMIS

11 / 1

A common generalization of k + 1-claw free graphs
and chordal graphs

One vague theme I try to think about is the interplay between classes of
problems and classes of algorithms. In some way this leads to a common
extension of chordal and k + 1-claw free graph implicitly defined in
Akcoglu et al [2002] and pursued in Ye and B. [2009].

A graph is inductively k-independent is there is a “k-PEO” ordering
of the vertices v1, . . . , vn such that Nbhd(vi) ∩ {vi+1, . . . , vn} has at
most k independent vertices.

For example,

The JISP problem induces an inductively 2-independent graph.

Every planar graph is inductively 3-independent.

12 / 1

Extending results from chordal to inductive k
independent graphs

The WMIS stack algorithm and analysis for chordal graphs extends to
provide a k approximation for WMIS on inductive k independent
graphs by using a k-PEO.

The reverse order k-PEO greedy algorithm is a k-approximation graph
colouring algorithm for inductive k independent graphs.

Note that for interval graphs, the reverse order PEO is equivalent to
ordering the intervals so that s1 ≤ s2 . . . ≤ sn where sj is the start
time of interval Ij .

This concept generalizes “inductive degree k” and all graphs having
treewidth k are inductive degree k . (Treewidth k will be defined
later.)

13 / 1

Another example where the “natural greedy” is not
best

Before moving (for now) beyond greedy-like algorithms, we consider
another example (as we saw for set packing) where the “natural
greedy algorithm” does not yield a good approximation.
The vertex cover problem: Given node weighted graph G = (V ,E),
with node weights w(v), v ∈ V .
Goal: Find a subset V ′ ⊂ V that covers the edges (i.e.
∀e = (u, v) ∈ E , either u or v is in V ′) so as to mininize

∑
v∈V ′ w(v).

Even for unweighted graphs, the problem is known to be NP-hard to
obtain a 1.3606 approximation and under another (not so universally
believed) conjecture (UGC) one cannot obtain a 2− ε approximation.
For the unweighted problem, there are simple 2-approximation greedy
algorithms such as just taking V ′ to be any maximal matching.
The set cover problem is as follows: Given a weighted collection of
sets S = {S1, S2, . . . ,Sm} over a universe U with set weights w(Si).
Goal: Find a subcollection S ′ that covers the universe so as to
minimize

∑
Si∈S′ w(Si).

14 / 1

The natural greedy algorithm for weighted vertex
cover
If we consider vertex cover as a special case of set cover (how?), then the
natural greedy (which is essentially optimal for set cover) becomes the
following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure : Natural greedy algorithm for weighted vertex cover with approximation
ratio Hn ≈ ln n where n = |V |.

15 / 1

Clarkson’s [1983] modified greedy for weighted
vertex cover

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

w ′(v) := w(v) for all v ∈ V
% w ′(v) will be the residual weight of a node

While there are uncovered edges
Let v be the node minimizing w ′(v)/d ′(v)
w :=w ′(v)/d ′(v)
w ′(u) :=w ′(u)− w for all u ∈ Nbhd(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd(v)

End While

Figure : Clarkson’s greedy algorithm for weighted vertex cover with
approximation ratio 2

16 / 1

Dynamic Programming (DP)

The application and importance of dynamic programming goes well
beyond search and optimzation problems.

We will consider a few more or less “natural” DP algorithms and
some not so obvious DP algorithms.

In greedy like algorithms (and also local search, our next major
paradigm) it is often easy to come up with reasonably natural
algorithms (although we have seen some not so obvious examples)
whereas sometimes the analysis can be relatively involved.

In contrast, once we come up with an appropriate DP algorithm. it is
often the case that the analysis is relatively easy.

Here informally is the essense of DP algorithms: define an approriate
generalization of the problem (which we usually give in the form of a
multi-dimensional array) such that

1 the desired result can be easily obtained from the array S [, , ...]
2 each entry of the array can be easily computed given “previous entries”

17 / 1

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Can there be an optimal polynomal time DP for say maximum size or
weight bipartite matching?

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

18 / 1

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Can there be an optimal polynomal time DP for say maximum size or
weight bipartite matching?

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

18 / 1

Bellman 1957 (in the spirit of Samuel Johnson)

Bellman (who introduced dynamic programming) argued against against
attempts to formalize DP.

We have purposely left the description a little vague, since it is the spirit
of the approach to these processes that is significant, rather than a letter
of some rigid formulation. It is extremely important to realize that one can
neither axiomatize mathematical formulation nor legislate away ingenuity.
In some problems, the state variables and the transformations are forced
upon us; in others, there is a choice in these matters and the analytic
solution stands or falls upon this choice; in still others, the state variables
and sometimes the transformations must be artificially constructed.
Experience alone, combined with often laborious trial and
error, will yield suitable formulations of involved processes.

19 / 1

Some simple DP algorithms

Let’s begin with an example used in many texts, namely a DP for the
weighted interval scheduling problem WISP.

We have already claimed that no priority algorithm can yield a
constant approximation ratio but that we can obtain a
4-approximation using a revocable accaptance priority algorithm and
an optimal algorithm using a priority stack algorithm.

The optimal DP algorithm for WISP is based on the following
“semantic array”:

I Sort the intervals Ij = [sj , fj) so that f1 ≤ f2 . . . ≤ fn (i.e. the PEO).
I Define π(i) = max j : fj ≤ si (Note; if we do not want intervals to

touch then use fj < si .)
I For 1 ≤ i ≤ n, Define V [i] = optimal value obtainable from intervals
{I1, . . . Ii}.

20 / 1

The DP for WISP continued
We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1
2 For i > 1, Ṽ [i] = max{A,B} where

F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?

I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly.

21 / 1

The DP for WISP continued
We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1
2 For i > 1, Ṽ [i] = max{A,B} where

F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?
I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly.

21 / 1

Some comments on DP and the WISP DP
We can sort the intervals and compute π() in time O(n log n) and
then sequentially compute the entries of V in time O(1) per iteration.
We can also recursivley compute V , BUT must use memoization to
avoid recomputing entries.
To some extent, the need to use memoization distinguishes dynamic
programming from divide and conquer.
We can extend this DP to optimally solve the weighted interval
scheduling problem when there are m machines; that is, we want to
schedule intervals so that there is no intersection on any machine.
This extension would directly lead to time (and space) complexity
O(nm+1); O(nm) with some more care.
We can model this simple type of DP by a priority branching tree
(pBT) algorithm as formulated by Alekhnovich et al. Within this
model, we can prove that for any fixed m, the width (and hence the
space and thus time) of the algorithm for optimally scheduling
intervals on m machines is Ω(nm). That is, the curse of
dimensionality is necessary within this model.

22 / 1

